Demystify code signing and its importance in app development. Get help troubleshooting code signing issues and ensure your app is properly signed for distribution.

Post

Replies

Boosts

Views

Activity

Gatekeeper and code signing
Hello, I have made a basic c program and i have compiled it with gcc. This program has not been signed (i didn't run codesign). When i am trying to run this program from terminal, i don't get any Gatekeeper popup. My first question is... why ? I have create a SwiftUI project with Xcode (Xcode 15). I have set signing settings to "Sign to run locally" (by the way, can you tell me how i can disable signing in Xcode ?) I have opened terminal and i have changed current directory to ~/Library/Developer/Xcode/DerivatedData/..../Products/Debug/MyApp.app/Contents/MacOS folder. Now i get a gatekeeper confirmation popup if run "./Myapp" from terminal. My second question is... Why ? Does that mean Gatekeeper only checks signed binaries ? Thanks
3
0
1.4k
Nov ’23
Firewall refuses to add Python; MULTIPLE POP-UP alerts
On Sonoma I develop with gcloud and python2.7 and python3.9 from MacPorts. I always get MULTIPLE dialogue pop-ups when starting the python webserver in Terminal.app Choices are not remembered (neither block nor allow!!) I tried to solve that with socketfilterfw and codesign but it has NO effect at all. Questions like this creep around since 10 years on Stackexchange. I am searching since several hours for a solution of this problem. Is there any solution? 20 : /opt/local/Library/Frameworks/Python.framework/Versions/3.9/Resources/Python.app ( Allow incoming connections ) 21 : /opt/local/Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app ( Allow incoming connections ) sudo codesign -s - -f /opt/local/Library/Frameworks/Python.framework/Versions/3.9/Resources/Python.app
1
0
520
Oct ’23
BundleID identifier problems for new version of app
Good morning, I have a new version of an app which is on the App Store already, but I would like to send it to others using TestFlight first. I have created a new version for the app on the Apple Connect website. I have confirmed the new version number in Xcode for this app, but when I upload it through the archive process in Xcode I get this response: "App record with bundle identifier "" not found on App Store Connect. Create an app record on App Store Connect, or distribute the app from Xcode, and then try again." That was the default setting for App Store Connect. If I use the custom setting (and change the SKU because it is written as the bundle id identifier) I get this response: The app identifier "com.DefaultCompany.MyAppName" cannot be registered to your development team because it is not available. Change your bundle identifier to a unique string to try again. Can someone please help me resolve this. A task that was supposed to take thirty minutes has extended to over four hours, and I have not found a solution to this problem. All documentation on the apple developer site assumes an app will ve updated to a new version without sharing first through TestFlight. All of this seems really counter intuitive to what should be a relatively straightforward process.
2
0
2.9k
Oct ’23
Notarization causing 3rd party executables to not run correctly
I have created a .Net MAUI application that I have written for Windows and MacCatalyst. In my entitlements.plist I have com.apple.security.app-sandbox = no. <PropertyGroup Condition="'$(Configuration)|$(TargetFramework)|$(Platform)'=='Debug|net7.0-maccatalyst|AnyCPU'"> <MtouchLink>SdkOnly</MtouchLink> <EnableCodeSigning>True</EnableCodeSigning> <EnablePackageSigning>true</EnablePackageSigning> <CreatePackage>true</CreatePackage> <CodesignKey>Developer ID Application: xxxxxxxxxx</CodesignKey> <CodesignProvision>xxxxxxxx</CodesignProvision> <CodesignEntitlements>Platforms\MacCatalyst\Entitlements.plist</CodesignEntitlements> <PackageSigningKey>Developer ID Installer: xxxxxxxxx</PackageSigningKey> <UseHardenedRuntime>true</UseHardenedRuntime> <RuntimeIdentifier>maccatalyst-arm64</RuntimeIdentifier> <MtouchInterpreter>-all</MtouchInterpreter> </PropertyGroup> I have a 3rd party executable that I manually codesigned: codesign --force --verify --verbose --sign xxxxxx 3rdpartyApp --timestamp --deep --options runtime Then I build the application in Visual Studio Mac. Everything is codesigned, etc. After building I am able to successfully notarize the pkg and then staple the the notarization to it. When I take that pkg and install it in a test environment, everything installs fine, no warning. I am able to start my application and do what I need to do But when it tries to run that 3rd party executable, it just fails. At first I checked exec permissions. I chmod it to +x. within the .app container and also all the way at the beginning, and rebuilt the application, resigned, re-notarized, etc. I am working to get some logging out to see why it failed, but having an issue with that at the moment. In the meantime I have taken the non-notarized pkg, forced the install in the test environment and the 3rd party executable runs successfully. So it seems the notarization process is causing this child process to fail?
2
0
715
Oct ’23
User removal of security scoped bookmark
Hi, is it possible for a user to remove the implicit permission he or she gave to an app after opening a folder using a standard dialog? I'm asking this because a discussion took place with actual users reasonably arguing that the action may have been a mistake, not intentional at all, so at least we should give them a way to revert what was wrongly interpreted as intent. I believe that they are right and there should be a simple user-level way of doing that. So I looked for a way to remove the bookmark from the command line but to no avail. Thanks, Carlos.
1
0
488
Oct ’23
errSecInternalComponent building locally with Xcode
I'm running into a code signing issue with an (existing) app that I recently started working on. I haven't run into this problem with other apps built on the same computer using the same framework (Capacitor). When I try to build the app from Xcode, either to run on a linked iPhone or to archive/publish, I get the error message: "Command PhaseScriptExecution failed with a nonzero exit code" That script fails when running /usr/bin/codesign and shows the message errSecInternalComponent. I tried running the same command directly in the terminal and got the same error message. I started going through this forum post and the initial sanity check failed. I ran this from a local terminal, not over ssh or inside tmux. I didn't get any dialog prompts when running it, though that may make sense since I was already logged in: $ cp /usr/bin/true MyTrue $ codesign -s "Apple Development: ..." -f MyTrue MyTrue: replacing existing signature MyTrue: errSecInternalComponent $ echo $? 1 The identity I attempted to use is listed by security find-identity -p codesigning in both the "Matching identities" and "Valid identities only" sections. Keychain Access shows that the certificate is valid. I've tried restarting the computer. I've tried cleaning the build folder from Xcode. Any other suggestions for diagnosing and/or fixing the problem?
9
0
1.3k
Sep ’23
Code Sign using Azure Key Vault
I need an OV certificate to code sign an Electron application. I was used to build in Jenkins the application oth for Windows and macOS using Electron-Forge (https://www.electronforge.io/guides/code-signing/code-signing-macos). To be more specific use XCode and Keychain to store the certificate. Sadly, new certificate industry requirements will force me to use Azure Key Vaults (or other cloud HSM alternatives) to store the certificate. I need to find a way to code-sign it for macOS from Azure Key Vaults or equivalent solutions. Thank you
5
0
1.9k
Jun ’23
Gatekeeper does not lift the quarantine attribute of a signed and notarized downloaded application
I distribute an application in a zip file from my website. the application needs access to some files next to it to run properly. The application is correctly signed and notarized and stapled.Of course if I download it from my website, it gets the quarantine attribute. When I try to open it for the first time, a gatekeeper warning saying that the application comes from the internet, but has been checked by apple and no malware has been detected is displayed. My impression is that the application has been correctly signed and notarized. but If confirm that I wan to open it, the quarantine attribute is not deleted. spctl -a -v /path/to/Myapp.app path/to/Myapp.app: accepted source=Notarized Developer ID
13
0
1.8k
Jun ’23
The Care and Feeding of Developer ID
I regularly see folks run into problems with their Developer ID signing identities. Historically I pointed them to my posts on this thread, but I’ve decided to collect these ideas together in one place. If you have questions or comments, start a new thread here on DevForums and tag it with Developer ID so that I see it. IMPORTANT Nothing I write here on DevForums is considered official documentation. It’s just my personal ramblings based on hard-won experience. There is a bunch of official documentation that covers the topics I touch on here, including: Xcode documentation Xcode Help Developer Account Help Developer > Support > Certificates For a lot more information about code signing, see the Code Signing Resources pinned post. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" The Care and Feeding of Developer ID Most Apple signing assets are replaceable. For example, if you accidentally lose access to your Apple Development signing identity, it’s a minor inconvenience. Just use the Developer website to revoke your previous certificate and create a replacement. Or have Xcode do that for you. IMPORTANT If you don’t understand the difference between a certificate and a digital identity, and hence signing identity, read Certificate Signing Requests Explained before reading this post. Some signing assets are precious. Losing access to such assets has significant consequences. Foremost amongst those are Developer ID signing identities. These allow you to sign Mac products that ship independently. Anyone with access to your Developer ID signing identity can sign code as you. This has a number of consequences, both for you and for your relationship with Apple. Identify a Developer ID Signing Identity A Developer ID signing identity consists of two parts: the certificate and the private key. There are two different flavours, identifiable by the subject name in the certificate: Developer ID Application — This is named Developer ID Application: TTT, where TTT identifies your team. Use this to sign code and disk images. Developer ID Installer — This is named Developer ID Installer: TTT, where TTT identifies your team. Use this to sign installer packages. Note If you do KEXT development, there’s a third flavour, namely a KEXT-enabled Developer ID Application signing identity. For more details, see KEXT Code Signing Problems. This post focuses on traditional signing identities, where you manage the private key. Xcode Cloud introduced cloud signing, where signing identities are “stored securely in the cloud”. These identities have the Managed suffix in Certificates, Identifiers, and Profiles. For example, Developer ID Application Managed is the cloud signing equivalent of Developer ID Application. To learn more about cloud signing, watch WWDC 2021 Session 10204 Distribute apps in Xcode with cloud signing. To identify these certificates ‘in the wild’, see Identifying a Cloud Managed Signing Certificate. Limit Access to Developer ID Anyone with your Developer ID signing identity can sign code as you. Given that, be careful to limit access to these signing identities. This is true both for large organisations and small developers. In a large organisation, ensure that only folks authorised to ship code on behalf of your organisation have access to your Developer ID signing identities. Most organisations have some sort of release process that they use to build, test, and authorise a release. This often involves a continuous integration (CI) system. Restrict CI access to only those folks involved in the release process. Even if you’re a small developer with no formal release process, you can still take steps to restrict access to Developer ID signing identities. See Don’t Leak Your Private Key, below. In all cases, don’t use your Developer ID signing identities for day-to-day development. That’s what Apple Development signing identities are for. Create Developer ID Signing Identities as the Account Holder Because Developer ID signing identities are precious, the Developer website will only let the Account Holder create them. For instructions on how to do this, see Developer Account Help > Create certificates > Create Developer ID certificates. For more information about programme roles, see Developer > Support > Program Roles. IMPORTANT In an Organization team it’s common for the Account Holder to be non-technical. They may need help getting this done. For hints and tips on how to avoid problems while doing this, see Don’t Lose Your Private Key and Don’t Leak Your Private Key, both below. Limit the Number of Developer ID Signing Identities You Create Don’t create Developer ID signing identities unnecessarily. Most folks only need to create one. Well, one Developer ID Application and maybe one Developer ID Installer. A large organisation might need more, perhaps one for each sub-unit, but that’s it. There are two reasons why this is important: The more you have, the more likely it is for one to get into the wrong hands. Remember that anyone with your Developer ID signing identity can sign code as you. The Developer website limits you to 5 Developer ID certificates. Note I can never remember where this limit is actually documented, so here’s the exact quote from this page: You can create up to five Developer ID Application certificates and up to five Developer ID Installer certificates using either your developer account or Xcode. Don’t Lose Your Private Key There are two standard processes for creating a Developer ID signing identity: Developer website — See Developer Account Help > Create certificates > Create Developer ID certificates. Xcode — See Xcode Help > Maintaining signing assets > Manage signing certificates. Both processes implicitly create a private key in your login keychain. This makes it easy to lose your private key. For example: If you do this on one Mac and then get a new Mac, you might forget to move the private key to the new Mac. If you’re helping your Organization team’s Account Holder to create a Developer ID signing identity, you might forget to export the private key from their login keychain. It also makes it easy to accidentally leave a copy of the private key on a machine that doesn’t need it; see Don’t Leak Your Private Key, below, for specific advice on that front. Every time you create a Developer ID signing identity, it’s a good idea to make an independent backup of it. For advice on how to do that, see Back Up Your Signing Identities, below. That technique is also useful if you need to copy the signing identity to a continuous integration system. If you think you’ve lost the private key for a Developer ID signing identity, do a proper search for it. Finding it will save you a bunch of grief. You might be able to find it on your old Mac, in a backup, in a backup for your old Mac, and so on. For instructions on how to extract your private key from a general backup, see Recover a Signing Identity from a Mac Backup. If you’re absolutely sure that you previous private key is lost, use the Developer website to create a replacement signing identity. If the Developer website won’t let you create any more because you’ve hit the limit discussed above, talk to Developer Programs Support. Go to Apple > Developer > Contact Us and follow the path Development and Technical > Certificates, Identifiers, and Provisioning Profiles. Don’t Leak Your Private Key Anyone with your Developer ID signing identity can sign code as you. Thus, it’s important to take steps to prevent its private key from leaking. A critical first step is to limit access to your Developer ID signing identities. For advice on that front, see Limit Access to Developer ID, above. In an Organization team, only the Account Holder can create Developer ID signing identities. When they do this, a copy of the identity’s private key will most likely end up in their login keychain. Once you’ve exported the signing identity, and confirmed that everything is working, make sure to delete that copy of the private key. Some organisations have specific rules for managing Developer ID signing identities. For example, an organisation might require that the private key be stored in a hardware token, which prevents it from being exported. Setting that up is a bit tricky, but it offers important security benefits. Even without a hardware token, there are steps you can take to protect your Developer ID signing identity. For example, you might put it in a separate keychain, one with a different password and locking policy than your login keychain. That way signing code for distribution will prompt you to unlock the keychain, which reminds you that this is a significant event and ensures that you don’t do it accidentally. If you believe that your private key has been compromised, follow the instructions in the Compromised Certificates section of Developer > Support > Certificates. Back Up Your Signing Identities Given that Developer ID signing identities are precious, consider making an independent backup of them. To back up a signing identity to a PKCS#12 (.p12) file: Launch Keychain Access. At the top, select My Certificates. On the left, select the keychain you use for signing identities. For most folks this is the login keychain. Select the identity. Choose File > Export Items. In the file dialog, select Personal Information Exchange (.p12) in the File Format popup. Enter a name, navigate to your preferred location, and click Save. You might be prompted to enter the keychain password. If so, do that and click OK. You will be prompted to enter a password to protect the identity. Use a strong password and save this securely in a password manager, corporate password store, on a piece of paper in a safe, or whatever. You might be prompted to enter the keychain password again. If so, do that and click Allow. The end result is a .p12 file holding your signing identity. Save that file in a secure location, and make sure that you have a way to connect it to the password you saved in step 9. Remember to backup all your Developer ID signing identities, including the Developer ID Installer one if you created it. To restore a signing identity from a backup: Launch Keychain Access. Choose File > Import Items. In the open sheet, click Show Options. Use the Destination Keychain popup to select the target keychain. Navigate to and select the .p12 file, and then click Open. Enter the .p12 file’s password and click OK. If prompted, enter the destination keychain password and click OK. Alternatively, Xcode has a feature to export and import your developer account, including your Developer ID signing identities. Do this using the action menu in Xcode > Settings > Accounts. For the details, see Xcode Help > Maintaining signing assets > Export signing certificates and provisioning profiles. Recover a Signing Identity from a Mac Backup If you didn’t independently backup your Developer ID signing identity, you may still be able to recover it from a general backup of your Mac. To start, work out roughly when you created your Developer ID signing identity: Download your Developer ID certificate from the Developer website. In the Finder, Quick Look it. The Not Valid Before field is the date you’re looking for. Now it’s time to look in your backups. The exact details depend on the backup software you’re using, but the basic process runs something like this: Look for a backup taken shortly after the date you determined above. In that backup, look for the file ~/Library/Keychains/login.keychain. Recover that to a convenient location, like your desktop. Don’t put it in ~/Library/Keychains because that’ll just confuse things. Rename it to something unique, like login-YYYY-MM-DD.keychain, where YYYY-MM-DD is the date of the backup. In Keychain Access, choose File > Add Keychain and, in the resulting standard file panel, choose that .keychain file. On the left, select login-YYYY-MM-DD. Chose File > Unlock Keychain “login-YYYY-MM-DD“. In the resulting password dialog, enter your login password at the date of the backup. At the top, select My Certificates. Look through the list of digital identities to find the Developer ID identity you want. If you don’t see the one you’re looking for, see Further Recovery Tips below. Export it using the process described at the start of Back Up Your Signing Identities. Once you’re done, remove the keychain from Keychain Access: On the left, select the login-YYYY-MM-DD keychain. Choose File > Delete Keychain “login-YYYY-MM-DD”. In the confirmation alert, click Remove Reference. The login-YYYY-MM-DD.keychain is now just a file. You can trash it, keep it, whatever, at your discretion. This process creates a .p12 file. To work with that, import it into your keychain using the process described at the end of Back Up Your Signing Identities. IMPORTANT Keep that .p12 file as your own independent backup of your signing identity. Further Recovery Tips If, in the previous section, you can’t find the Developer ID identity you want, there are a few things you might do: Look in a different backup. If your account has more than one keychain, look in your other keychains. If you have more than one login account, look at the keychains for your other accounts. If you have more than one Mac, look at the backups for your other Macs. The login-YYYY-MM-DD keychain might have the private key but not the certificate. Add your Developer ID certificate to that keychain to see if it pairs with a private key. Revision History 2023-10-05 Added the Recover a Signing Identity from a Mac Backup and Further Recovery Tips sections. 2023-06-23 Added a link to Identifying a Cloud Managed Signing Certificate. 2023-06-21 First posted.
0
0
3.5k
Jun ’23
The application does not have permission to open "Downloads"
My app has the App Sandbox enabled and the File Access to Downloads folder is set to Read / Write in XCode. Upon clicking on a button the app should open the Finder displaying the Downloads folder. The following code snippet is used to launch the Finder if let inspirationsDirectory = FileManager.default.urls(for: .downloadsDirectory, in: .userDomainMask).first{ NSWorkspace.shared.open(inspirationsDirectory) } On my MacOS it works well. After releasing the app to the AppStore and installing it on another Mac the following message is received upon clicking the button: The application does not have permission to open "Downloads" Which would be the solution to launch the Finder successfully ? Is it possible to launch the Finder showing the Downloads folder sorted by the Date Added column descending ?
7
0
3.2k
Jun ’23
Give sandboxed app access to /var directory
I have an app that runs on macOS Monterey. For various reasons, I have to externally add a sandbox entitlement (externally, as in using codesign, rather than rebuilding it) After adding the sandbox entitlement, and resigning appropriately, the app crashes on launch with the following error : ERROR:process_singleton_posix.cc(1186)] Failed to bind() /var/folders/s2/j0z79krx321qg318das1r95_zc0000gn/T/com.funkyapp/S/SingletonSocket So I assumed I needed to give access to this file. So I added the following entitlements to the app, via codesign : &lt;key&gt;com.apple.security.temporary-exception.files.absolute-path.read-write&lt;/key&gt; &lt;array&gt; &lt;string&gt;/var&lt;/string&gt; &lt;string&gt;/var/folders/s2/j0z79krx321qg318das1r95_zc0000gn/T/com.funkyapp/S/SingletonSocket&lt;/string&gt; &lt;/array&gt; and also &lt;key&gt;com.apple.security.network.client&lt;/key&gt; &lt;true/&gt; &lt;key&gt;com.apple.security.network.server&lt;/key&gt; &lt;true/&gt; Unfortunately, it still crashes on load, with the same error. Does anyone know why that is? From my perspective, I gave the appropriate entitlements to bind a socket at that path, what am I missing? Thanks !
6
0
2.2k
Aug ’22
Drag&Drop DMG Installer to System folder ?!
I’ve got a run of the mill Drag&amp;Drop DMG installer. It works as expected when the drop target is /Applications. However I deliver plugins which I want to be copy to somewhere below /Library/Aplication Support/. Here too, everything works fine until I upload and download the dmg to my webserver. Now when dropping the plugins onto the target alias they just slide back. No error, no dialog asking for permissions, no nothing… just silently sliding back. And I haven’t the faintest idea how to address this. Would somebody please be my hero of the day and point me into the right direction, pretty please? The plugins and the dmg are codesigned and notarized. They work as expected when moving them to the plugins folder directly. It’s only the alias that will not work. The alias btw. is a soft link created using ln - s. Not sure this is the right category to post in. But it feels like it’s a probably a permission/entitlements issue.
4
0
1.2k
Aug ’22
Resolving Code Signing Crashes on Launch
This post is part of a cluster of posts related to the trusted execution system. If you found your way here directly, I recommend that you start at the top. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Resolving Code Signing Crashes on Launch A code signing crash has the following exception information: Exception Type: EXC_CRASH (SIGKILL (Code Signature Invalid)) IMPORTANT Most developers never see a code signing crash because they use Xcode to build and sign their product. Xcode’s code signing infrastructure detects problems that could cause a code signing crash, and its automatic code signing fixes them for you! If you’re having problems with code signing crashes and you can use Xcode but aren’t, consider making the switch Xcode. The most common code signing crash is a crash on launch. To confirm that, look at the thread backtraces: Backtrace not available If you see valid thread backtraces this is not a crash on launch. Go back to Resolving Trusted Execution Problems and read through the Code Signing Crashes After Launch section. If you see no thread backtraces, your code didn’t run at all. The trusted execution system has blocked it. In most cases there is some evidence of the problem in the system log. For example: type: error time: 2022-05-19 06:29:17.640331 -0700 process: taskgated-helper subsystem: com.apple.ManagedClient category: ProvisioningProfiles message: com.example.apple-samplecode.OverClaim: Unsatisfied entitlements: com.apple.overclaim This indicates that the OverClaim app, with bundle ID com.example.apple-samplecode.OverClaim, claimed a restricted entitlement, com.apple.overclaim, that wasn’t authorised by a provisioning profile. For more information about provisioning profiles, see TN3125 Inside Code Signing: Provisioning Profiles. Specifically, the Entitlements on macOS section discusses the concept of restricted entitlements. For general information about the system log, see Your Friend the System Log. Normalise the Entitlements Property List Entitlement property list files look like text and so it’s tempting to edit them with a text editor. This can lead to all sorts of problems. If you have code whose entitlements property list contains comments, non-Unix line endings, or other weird formatting, the trusted execution system may block it. To avoid such problems, normalise your entitlements property list before passing it to codesign. For example: % plutil -convert xml1 MyApp.plist % codesign -s III --entitlements MyApp.plist MyApp.app Problems like this typically show up on older systems. Modern systems use DER-encoded entitlements, as discussed in The future is DER section of TN3125. A related gotcha is line breaks. Consider this entitlements property list file: % cat MyApp.plist … <plist version="1.0"> <dict> <key> com.apple.security.cs.disable-library-validation</key> <true/> </dict> </plist> This is a valid property list but it doesn’t do what you think it does. It looks like it claims the com.apple.security.cs.disable-library-validation entitlement but in reality it claims \ncom.apple.security.cs.disable-library-validation. The system treats the latter as a restricted entitlement and thus requires it to be authorised by a profile. Of course no such profile will authorise that entitlement, and so the app is blocked by the trusted execution system. Similarly, consider this: % cat MyApp.plist … <plist version="1.0"> <dict> <key> com.apple.security.cs.disable-library-validation</key> <true/> </dict> </plist> This claims com.apple.security.cs.disable-library-validation, note the leading space, and that’s also blocked by the trusted execution system. Check for Unauthorised Entitlements Sometimes the system log may not make it obvious what’s gone wrong. It may be easier to work this out by looking at the built program. The most common cause of problems like this is the app claiming a restricted entitlement that’s not authorised by a provisioning profile. To start your investigation, dump the entitlements to check for restricted entitlements: % codesign -d --entitlements - "OverClaim.app" …/OverClaim.app/Contents/MacOS/OverClaim [Dict] [Key] com.apple.application-identifier [Value] [String] SKMME9E2Y8.com.example.apple-samplecode.OverClaim [Key] com.apple.developer.team-identifier [Value] [String] SKMME9E2Y8 [Key] com.apple.overclaim [Value] [Bool] true [Key] com.apple.security.get-task-allow [Value] [Bool] true In this case all the entitlements except com.apple.security.get-task-allow are restricted. Note If there are no restricted entitlements, something else has gone wrong. Go back to Resolving Trusted Execution Problems and look for other potential causes. Now check that the provisioning profile was embedded correctly and extract its payload: % ls -l "OverClaim.app/Contents/embedded.provisionprofile" … OverClaim.app/Contents/embedded.provisionprofile % security cms -D -i "OverClaim.app/Contents/embedded.provisionprofile" -o "OverClaim-payload.plist" Check that the profile applies to this app by dumping the com.apple.application-identifier entitlement authorised by the profile: % /usr/libexec/PlistBuddy -c "print :Entitlements:com.apple.application-identifier" OverClaim-payload.plist SKMME9E2Y8.com.example.apple-samplecode.* This should match the com.apple.application-identifier entitlement claimed by the app. Repeat this for all the remaining restricted entitlements: % /usr/libexec/PlistBuddy -c "print :Entitlements:com.apple.developer.team-identifier" OverClaim-payload.plist SKMME9E2Y8 % /usr/libexec/PlistBuddy -c "print :Entitlements:com.apple.overclaim" OverClaim-payload.plist Print: Entry, ":Entitlements:com.apple.overclaim", Does Not Exist In this example the problem is the com.apple.overclaim entitlement, which is claimed by the app but not authorised by the profile. If that’s the case for your program, you have two choices: If you program doesn’t need this entitlement, update your code signing to not claim it. If you program relies on this entitlement, update your profile to authorise it. The entitlement allowlist in the profile is built by the Apple Developer website based on the capabilities enabled on your App ID. To change this allowlist, modify your App ID capabilities and rebuild your profile. Some capabilities are only available on some platforms and, within that platform, for some distribution channels. For these details for macOS, see Developer Account Help > Reference > Supported capabilities (macOS). Some capabilities require review and approval by Apple. For more on this, see Developer Account Help > Reference > Provisioning with capabilities. Check for Required Entitlements If your app claims any restricted entitlements, it must also claim the com.apple.application-identifier entitlement, with its value being your app’s App ID. macOS uses this value to confirm that the embedded provisioning profile is appropriate for your app. Without this, macOS might not use this profile, which means there’s nothing to authorise your app’s use of restricted entitlements, which prevents your app from launching. IMPORTANT macOS 12 and later will use an embedded provisioning profile even if the app doesn’t claim the com.apple.application-identifier entitlement. So, if your app works on macOS 12 and later but fails on macOS 11, this is likely the cause. If you claim the com.apple.application-identifier entitlement then I recommend that you also claim the com.apple.developer.team-identifier entitlement. That’s what Xcode does, and my experience is that it’s best to stay on that well-trodden path. Check the Signing Certificate If your program’s entitlements look good, the next most likely problem is that your program was signed by a signing identity whose certificate is not authorised by the profile. To debug this, first extract the certificate chain from your program: % codesign -d --extract-certificates=signed-with- "OverClaim.app" … % for i in signed-with-* ; do mv "${i}" "${i}.cer" ; done The first certificate is the one that matters: % certtool d "signed-with-0.cer" Serial Number : 53 DB 60 CC 85 32 83 DE 72 D9 6A C9 8F 84 78 25 … Subject Name : Other name : UT376R4K29 Common Name : Apple Development: Quinn Quinn (7XFU7D52S4) OrgUnit : SKMME9E2Y8 Org : Quinn Quinn Country : US … Now check this against each of the certificates authorised by the profile. Start by extracting the first one: % plutil -extract DeveloperCertificates.0 raw -o - OverClaim-payload.plist | base64 -D > "authorised0.cer" % certtool d "authorised0.cer" Serial Number : 46 A8 EF 2C 52 54 DE FD D1 76 9D 3A 41 7C 9E 43 … Subject Name : Other name : UT376R4K29 Common Name : Mac Developer: Quinn Quinn (7XFU7D52S4) OrgUnit : SKMME9E2Y8 Org : Quinn Quinn Country : US … That’s not a match. So try the next one: % plutil -extract DeveloperCertificates.1 raw -o - OverClaim-payload.plist | base64 -D > authorised1.cer % certtool d "authorised1.cer" Serial Number : 53 DB 60 CC 85 32 83 DE 72 D9 6A C9 8F 84 78 25 … Subject Name : Other name : UT376R4K29 Common Name : Apple Development: Quinn Quinn (7XFU7D52S4) OrgUnit : SKMME9E2Y8 Org : Quinn Quinn Country : US … This matches, which means the profile applies to this code. IMPORTANT When checking for a match, look at the Serial Number field. Don’t just rely on the Common Name field. A common mistake is to have two signing identities whose certificates have identical common names but the profile only lists one of them. If you get to the end of the list of certificate list in the profile and don’t find the certificate that the program was signed with, you know what the problem is: Your program is signed with a signing identity whose certificate is not listed in its profile. To fix this, either: Reconfigure your code signing to use a signing identity whose certificate is listed. Or update the profile to include the certificate of the signing identity you’re using. Check for Expiration If your certificates aren’t the problem, check that nothing has expired. Start with the certificate from the app’s signature: % certtool d "signed-with-0.cer" Serial Number : 53 DB 60 CC 85 32 83 DE 72 D9 6A C9 8F 84 78 25 … Not Before : 10:52:56 Apr 21, 2022 Not After : 10:52:55 Apr 21, 2023 … Also check the expiry date on the profile: % plutil -extract ExpirationDate raw -o - OverClaim-payload.plist 2023-04-21T11:02:58Z If either has expired, update it and re-sign your product. IMPORTANT Developer ID-signed code and installers include a secure timestamp. When the system checks the expiry date on a Developer ID certificate, it only checks that the certificate was valid at the time that the code was signed, base on that secure timestamp. Thus, an old Developer ID-signed app will continue to run after it’s certificate has expired. To learn more about secure timestamps, see TN3161 Inside Code Signing: Certificates. Check the Supported Devices If everything else checks out, the last thing to check is that the profile authorises the code to run on this machine. There are two cases here: Developer ID profiles authorise the code on all machines. Other profiles authorise the code on a specific list of machines. If you think you have a Developer ID profile, confirm that by looking for the ProvisionsAllDevices property: % plutil -extract "ProvisionsAllDevices" xml1 -o - "OverClaim-payload.plist" … No value at that key path or invalid key path: ProvisionsAllDevices If that’s not the case, get the ProvisionedDevices property and verify that the current machine’s provisioning UDID is listed there: % plutil -extract "ProvisionedDevices" xml1 -o - "OverClaim-payload.plist" … <array> … <string>A545CA26-80D7-5B38-A98C-530A798BE342</string> … </array> </plist> % system_profiler SPHardwareDataType … Provisioning UDID: A545CA26-80D7-5B38-A98C-530A798BE342 … If you get to the end any everything looks OK, your provisioning profile is not the cause of this crash. Return to Resolving Trusted Execution Problems for more suggestions. Revision History 2024-02-20 Added the Check for Required Entitlements section. Added a link to TN3161. Fixed the Developer Account Help links. 2022-06-08 Added the Normalise the Entitlements Property List section. 2022-05-20 First posted.
0
0
4.1k
May ’22
Resolving Trusted Execution Problems
I help a lot of developers with macOS trusted execution problems. For example, they might have an app being blocked by Gatekeeper, or an app that crashes on launch with a code signing error. If you encounter a problem that’s not explained here, start a new thread with the details. Make sure to add relevant tags — like Gatekeeper, Code Signing, and Notarization — so that I see your post. IMPORTANT macOS 14 has a new tool, syspolicy_check, that was specifically designed to help diagnose problems like this. I plan to update this post once I have more experience with it. In the meantime, however, if you hit a trusted execution problem and it reproduces on macOS 14, please try out syspolicy_check and let us know how that pans out. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Resolving Trusted Execution Problems macOS supports three software distribution channels: The user downloads an app from the App Store. The user gets a Developer ID-signed program directly from its developer. The user builds programs locally using Apple or third-party developer tools. The trusted execution system aims to protect users from malicious code. It’s comprised of a number of different subsystems. For example, Gatekeeper strives to ensure that only trusted software runs on a user’s Mac, while XProtect is the platform’s built-in anti-malware technology. Note To learn more about these technologies, see Apple Platform Security. If you’re developing software for macOS your goal is to avoid trusted execution entanglements. You want users to install and use your product without taking any special steps. If, for example, you ship an app that’s blocked by Gatekeeper, you’re likely to lose a lot of customers, and your users’ hard-won trust. Trusted execution problems are rare with Mac App Store apps because the Mac App Store validation process tends to catch things early. This post is primarily focused on Developer ID-signed programs. Developers who use Xcode encounter fewer trusted execution problems because Xcode takes care of many code signing and packaging chores. If you’re not using Xcode, consider making the switch. If you can’t, consult the following for information on how to structure, sign, and package your code: Placing Content in a Bundle Embedding Nonstandard Code Structures in a Bundle Embedding a Command-Line Tool in a Sandboxed App Creating Distribution-Signed Code for Mac DevForums post Packaging Mac Software for Distribution DevForums post Gatekeeper Basics User-level apps on macOS implement a quarantine system for new downloads. For example, if Safari downloads a zip archive, it quarantines that archive. This involves setting the com.apple.quarantine extended attribute on the file. Note The com.apple.quarantine extended attribute is not documented as API. If you need to add, check, or remove quarantine from a file programmatically, use the quarantinePropertiesKey property. User-level unarchiving tools preserve quarantine. To continue the above example, if you double click the quarantined zip archive in the Finder, Archive Utility will unpack the archive and quarantine the resulting files. If you launch a quarantined app, the system invokes Gatekeeper. Gatekeeper checks the app for problems. If it finds no problems, it asks the user to confirm the launch, just to be sure. If it finds a problem, it displays an alert to the user and prevents them from launching it. The exact wording of this alert varies depending on the specific problem, and from release to release of macOS, but it generally looks like the ones shown in Apple > Support > Safely open apps on your Mac. The system may run Gatekeeper at other times as well. The exact circumstances under which it runs Gatekeeper is not documented and changes over time. However, running a quarantined app always invokes Gatekeeper. Unix-y networking tools, like curl and scp, don’t quarantine the files they download. Unix-y unarchiving tools, like tar and unzip, don’t propagate quarantine to the unarchived files. Confirm the Problem Trusted execution problems can be tricky to reproduce: You may encounter false negatives, that is, you have a trusted execution problem but you don’t see it during development. You may also encounter false positives, that is, things fail on one specific Mac but otherwise work. To avoid chasing your own tail, test your product on a fresh Mac, one that’s never seen your product before. The best way to do this is using a VM, restoring to a snapshot between runs. For a concrete example of this, see Testing a Notarised Product. The most common cause of problems is a Gatekeeper alert saying that it’s blocked your product from running. However, that’s not the only possibility. Before going further, confirm that Gatekeeper is the problem by running your product without quarantine. That is, repeat the steps in Testing a Notarised Product except, in step 2, download your product in a way that doesn’t set quarantine. Then try launching your app. If that launch fails then Gatekeeper is not the problem, or it’s not the only problem! Note The easiest way to download your app to your test environment without setting quarantine is curl or scp. Alternatively, use xattr to remove the com.apple.quarantine extended attribute from the download before you unpack it. For more information about the xattr tool, see the xattr man page. Trusted execution problems come in all shapes and sizes. The remaining sections address the most common ones. App Blocked by Gatekeeper If your product is an app and it works correctly when not quarantined but is blocked by Gatekeeper when it is, you have a Gatekeeper problem. For advice on how to investigate such issues, see Resolving Gatekeeper Problems. App Can’t Be Opened Not all failures to launch are Gatekeeper errors. In some cases the app is just broken. For example: The app’s executable might be missing the x bit set in its file permissions. The app’s executable might be subtly incompatible with the current system. A classic example of this is trying to run a third-party app that contains arm64e code. macOS requires that third-party kernel extensions use the arm64e architecture. In other circumstances, stick to arm64 for your shipping products. If you want to test arm64e code locally, see Preparing Your App to Work with Pointer Authentication. The app’s executable might claim restricted entitlements that aren’t authorised by a provisioning profile. Or the app might have some other code signing problem. Note For more information about provisioning profiles, see TN3125 Inside Code Signing: Provisioning Profiles. In such cases the system displays an alert saying: The application “NoExec” can’t be opened. [[OK]] Note In macOS 11 this alert was: You do not have permission to open the application “NoExec”. Contact your computer or network administrator for assistance. [[OK]] which was much more confusing. A good diagnostic here is to run the app’s executable from Terminal. For example, an app with a missing x bit will fail to run like so: % NoExec.app/Contents/MacOS/NoExec zsh: permission denied: NoExec.app/Contents/MacOS/NoExec And an app with unauthorised entitlements will be killed by the trusted execution system: % OverClaim.app/Contents/MacOS/OverClaim zsh: killed OverClaim.app/Contents/MacOS/OverClaim In some cases running the executable from Terminal will reveal useful diagnostics. For example, if the app references a library that’s not available, the dynamic linker will print a helpful diagnostic: % MissingLibrary.app/Contents/MacOS/MissingLibrary dyld[88394]: Library not loaded: @rpath/CoreWaffleVarnishing.framework/Versions/A/CoreWaffleVarnishing … zsh: abort MissingLibrary.app/Contents/MacOS/MissingLibrary Code Signing Crashes on Launch A code signing crash has the following exception information: Exception Type: EXC_CRASH (SIGKILL (Code Signature Invalid)) The most common such crash is a crash on launch. To confirm that, look at the thread backtraces: Backtrace not available For steps to debug this, see Resolving Code Signing Crashes on Launch. One common cause of this problem is running distribution-signed code. Don’t do that! For details on why that’s a bad idea, see Don’t Run App Store Distribution-Signed Code. Code Signing Crashes After Launch If your program crashes due to a code signing problem after launch, you might have encountered the issue discussed in Updating Mac Software. Non-Code Signing Failures After Launch The hardened runtime enables a number of security checks within a process. Some coding techniques are incompatible with the hardened runtime. If you suspect that your code is incompatible with the hardened runtime, see Resolving Hardened Runtime Incompatibilities. App Sandbox Inheritance If you’re creating a product with the App Sandbox enabled and it crashes with a trap within _libsecinit_appsandbox, it’s likely that you’re having App Sandbox inheritance problems. For the details, see Resolving App Sandbox Inheritance Problems. Library Loading Problem Most library loading problems have an obvious cause. For example, the library might not be where you expect it, or it might be built with the wrong platform or architecture. However, some library loading problems are caused by the trusted execution system. For the details, see Resolving Library Loading Problems. Explore the System Log If none of the above resolves your issue, look in the system log for clues as to what’s gone wrong. Some good keywords to search for include: gk, for Gatekeeper xprotect syspolicy, per the syspolicyd man page cmd, for Mach-O load command oddities amfi, for Apple mobile file integrity, per the amfid man page taskgated, see its taskgated man page yara, discussed in Apple Platform Security ProvisioningProfiles Here’s a log command that I often use when I’m investigating a trusted execution problem and I don’t know here to start: % log stream --predicate "sender == 'AppleMobileFileIntegrity' or sender == 'AppleSystemPolicy' or process == 'amfid' or process == 'taskgated-helper' or process == 'syspolicyd'" For general information the system log, see Your Friend the System Log. Revision History 2024-01-12 Added a specific command to the Explore the System Log section. Change the syspolicy_check callout to reflect that macOS 14 is no longer in beta. Made minor editorial changes. 2023-06-14 Added a quick call-out to the new syspolicy_check tool. 2022-06-09 Added the Non-Code Signing Failures After Launch section. 2022-06-03 Added a link to Don’t Run App Store Distribution-Signed Code. Fixed the link to TN3125. 2022-05-20 First posted.
0
0
7.3k
May ’22
"Invalid Bundle. The bundle <bundle name> does not support the minimum OS Version specified in the Info.plist"
I have been working with a framework to add multiplayer support to my app. The app runs on test devices, simulators, and archives perfectly fine and the app is fine without the framework. But when I go to distribute the app, I see get this error related to the multiplayer framework I have added. I have tried updating the minimumOSVersion to 9.0, 10.0, 12.0, and 13.0 everywhere (info.plist, deployment info, build settings, etc) and they all match with each build/archive but no matter what I can't get fix this error. This error only shows up when I go to distribute the app to the store. Any ideas on what to try or how to fix this issue? I've attached a screenshot of the issue below.
11
3
13k
May ’22
Packaging Mac Software for Distribution
IMPORTANT I’m very pleased to report that, due to the hard work of a number of folks at Apple, this DevForums post has been replaced by official documentation: Packaging Mac software for distribution. I’m leaving this post in place as a historical curiosity, but please consult the official documentation going forward. This post is one of a pair of posts, the other one being Creating Distribution-Signed Code for Mac, that replaces my earlier Signing a Mac Product For Distribution post. For more background on this, see the notes at the top of Creating Distribution-Signed Code for Mac. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Packaging Mac Software for Distribution Build a zip archive, disk image, or installer package for distributing your Mac software. Overview Xcode is a great tool for creating and distributing Mac apps. Once you’ve written your code you can upload it to the App Store with just a few clicks. However, Xcode cannot do everything. For example: Some Mac software products are not apps. You might, for example, be creating a product that includes a daemon. Some Mac products include multiple components. Your daemon might include an app to configure it. Some Mac products ship outside of the App Store, and so need to be packaged for distribution. For example, you might choose to distribute your daemon and its configuration app in an installer package. Some Mac products are built with third-party developer tools. If your product cannot be built and distributed using Xcode alone, follow these instructions to package it for distribution. Note If you use a third-party developer tool to build your app, consult its documentation for advice specific to that tool. To start this process you need distribution-signed code. For detailed advice on how to create distribution-signed code, see Creating Distribution-Signed Code for Mac. If you ship your product frequently, create a script to automate the distribution process. Decide on a Container Format To get started, decide on your container format. Mac products support two distribution channels: The Mac App Store, for apps Independent distribution, for apps and non-apps, using Developer ID signing A Mac App Store app must be submitted as an installer package. In contrast, products distributed outside of the Mac App Store use a variety of different container formats, the most common being: Zip archive (.zip) Disk image (.dmg) Installer package (.pkg) You may choose to nest these containers. For example, you might ship an app inside an installer package on a disk image. Nesting containers is straightforward: Just work from the inside out, following the instructions for each container at each step. IMPORTANT Sign your code and each nested container (if the container supports signing). For example, if you ship an app inside an installer package on a disk image, sign the app, then create the installer package, then sign that package, then create the disk image, then sign the disk image. Each container format has its own pros and cons, so choose an approach based on the requirements of your product. Build a Zip Archive If you choose to distribute your product in a zip archive, use the ditto tool to create that archive: Create a directory that holds everything you want to distribute. Run the ditto tool as shown below, where DDD is the path to the directory from step 1 and ZZZ is the path where ditto creates the zip archive. % ditto -c -k --keepParent DDD ZZZ Zip archives cannot be signed, although their contents can be. Build an Installer Package If you choose to distribute your product in an installer package, start by determining your installer signing identity. Choose the right identity for your distribution channel: If you’re distributing an app on the Mac App Store, use a Mac Installer Distribution signing identity. This is named 3rd Party Mac Developer Installer: TTT, where TTT identifies your team. If you’re distributing a product independently, use a Developer ID Installer signing identity. This is named Developer ID Installer: TTT, where TTT identifies your team. For information on how to set up these installer signing identities, see Developer Account Help. Run the following command to confirm that your installer signing identity is present and correct: % security find-identity -v 1) 6210ECCC616B6A72F238DE6FDDFDA1A06DEFF9FB "3rd Party Mac Developer Installer: …" 2) C32E0E68CE92936D5532E21BAAD8CFF4A6D9BAA1 "Developer ID Installer: …" 2 valid identities found The -v argument filters for valid identities only. If the installer signing identity you need is not listed, see Developer Account Help. IMPORTANT Do not use the -p codesigning option to filter for code signing identities. Installer signing identities are different from code signing identities and the -p codesigning option filters them out. If your product consists of a single app, use the productbuild tool to create a simple installer package for it: % productbuild --sign III --component AAA /Applications PPP In this command: III is your installer signing identity. AAA is the path to your app. PPP is the path where productbuild creates the installer package. The above is the simplest possible use of productbuild. If you’re submitting an app to the Mac App Store, that’s all you need. If you have a more complex product, you’ll need a more complex installer package. For more details on how to work with installer packages, see the man pages for productbuild, productsign, pkgbuild, and pkgutil. For instructions on how to read a man page, see Reading UNIX Manual Pages. Build a Disk Image If you choose to distribute your product in a disk image: Create a directory to act as the source for the root directory of your disk image’s volume. Populate that directory with the items you want to distribute. If you’re automating this, use ditto rather than cp because ditto preserves symlinks. Use hdiutil command shown below to create the disk image, where SSS is the directory from step 1 and DDD is the path where hdiutil creates the disk image. Decide on a code signing identifier for this disk image. If you were signing bundled code, you’d use the bundle ID as the code signing identifier. However, disk images have no bundle ID and thus you must choose a code signing identifier for your image. For advice on how to do this, see the Sign Each Code section in Creating Distribution-Signed Code for Mac. Use the codesign command shown below to sign the disk image, where III is your Developer ID Application code signing identity (named Developer ID Application: TTT, where TTT identifies your team), BBB is the code signing identifier you chose in the previous step, and DDD is the path to the disk image from step 3. % hdiutil create -srcFolder SSS -o DDD % codesign -s III --timestamp -i BBB DDD For more information on code signing identities, see the Confirm Your Code Signing section in Creating Distribution-Signed Code for Mac. IMPORTANT Sign your disk image with a code signing identity, not an installer signing identity. There are various third-party tools that configure a disk image for distribution. For example, the tool might arrange the icons nicely, set a background image, and add a symlink to the Applications folder. If you use such a tool, or create your own tool for this, make sure that the resulting disk image: Is signed with your Developer ID Application code signing identity Is a UDIF-format read-only zip-compressed disk image (type UDZO) Submit Your App to the Mac App Store If you’re creating an app for the Mac App Store, submit your signed installer package using either the altool command-line tool or the Transporter app. For detailed instructions, see App Store Connect Help > Reference > Upload tools. Notarize Your Product If you’re distributing outside of the Mac App Store, notarize the file you intend to distribute to your users. For detailed instructions, see Customizing the Notarization Workflow. Skip the Export a Package for Notarization section because you already have the file that you want to submit. If you’re using nested containers, only notarize the outermost container. For example, if you have an app inside an installer package on a disk image, sign the app, sign the installer package, and sign the disk image, but only notarize the disk image. The exception to this rule is if you have a custom third-party installer. In that case, see the discussion in Customizing the Notarization Workflow. Staple Your Product Once you’ve notarized your product, staple the resulting ticket to the file you intend to distribute. Staple the Ticket to Your Distribution discusses how to do this for an app within a zip archive. The other common container formats, installer packages and disk images, support stapling directly. For example, to staple a tick to a disk image: % xcrun stapler staple FlyingAnimals.dmg Stapling is recommended but not mandatory. However, if you don’t staple a user might find that your product is blocked by Gatekeeper if they try to install or use it while the Mac is offline. Revision History 2024-02-19 Added a preamble that links to the official documentation, Packaging Mac software for distribution. 2022-03-01 First posted.
0
0
8.5k
Mar ’22
Creating Distribution-Signed Code for Mac
IMPORTANT I’m very pleased to report that, due to the hard work of a number of folks at Apple, this DevForums post has been replaced by official documentation: Creating distribution-signed code for macOS. I’m leaving this post in place as a historical curiosity, but please consult the official documentation going forward. This post is one of a pair of posts, the other one being Packaging Mac Software for Distribution, that replaces my earlier Signing a Mac Product For Distribution post. Over the past year I’ve been trying to convert my most useful code signing posts here on DevForums to official documentation, namely: Placing Content in a Bundle Updating Mac Software Signing a Daemon with a Restricted Entitlement Embedding a Command-Line Tool in a Sandboxed App Embedding Nonstandard Code Structures in a Bundle Unfortunately in the past month or so my Day Job™, answering developer questions for DTS, has become super busy, and so I’ve not had chance to complete this work by publish a replacement for Signing a Mac Product For Distribution. This post, and Packaging Mac Software for Distribution, represent the current state of that effort. I think these are sufficiently better than Packaging Mac Software for Distribution to warrant posting them here on DevForums while I wait for the quiet time needed to finish the official work. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Creating Distribution-Signed Code for Mac Sign Mac code for distribution using either Xcode or command-line tools. Overview Before shipping a software product for the Mac, you must first create distribution-signed code, that is, code that you can package up and then submit to either the Mac App Store or the notary service. The way you do this depends on the nature of your product and how it was built: If your product is a standalone app, possibly with nested code such as an app extension, that you build using Xcode, use Xcode to export a distribution-signed app. If your product isn't a standalone app, but you build it using Xcode, create an Xcode archive, and then manually export distribution-signed code from that archive. If you build your product using an external build system, such as make, add a manual signing step to your build system. Once you have distribution-signed code, package it for distribution. For more information, see Packaging Mac Software for Distribution. Note If you use a third-party developer tool to build your app, consult its documentation for advice specific to that tool. Export an App from Xcode If your product is a standalone app that you build with Xcode, follow these steps to export a distribution-signed app: Build an Xcode archive from your project. Export a distribution-signed app from that Xcode archive. You can complete each step from the Xcode app or automate the steps using xcodebuild. To build an Xcode archive using the Xcode app, select your app’s scheme and choose Product > Archive. This creates the Xcode archive and selects it in the organizer. To create a distribution-sign app from that archive, select the archive in the organizer, click Distribute App, and follow the workflow from there. Note If the button says Distribute Content rather than Distribute App, your archive has multiple items in its Products directory. Make sure that every target whose output is embedded in your app has the Skip Install (SKIP_INSTALL) build setting set; this prevents the output from also being copied into the Xcode archive’s Products directory. For more on this, see TN3110 Resolving generic Xcode archive issue. For more information about the Xcode archives and the organizer, see Distributing Your App for Beta Testing and Releases. To build an Xcode archive from the command line, run xcodebuild with the archive action. Once you have an Xcode archive, export a distribution-signed app by running xcodebuild with the -exportArchive option. For more information about xcodebuild, see its man page. For instructions on how to read a man page, see Reading UNIX Manual Pages. For information about the keys supported by the export options property list, run xcodebuild with the -help argument. Export a Non-App Product Built with Xcode If you build your product with Xcode but it’s not a standalone app, you can build an Xcode archive using the techniques described in the previous section but you cannot export distribution-signed code from that archive. The Xcode organizer and the -exportArchive option only work for standalone apps. To export a distribution-signed product from the Xcode archive: Copy the relevant components from the archive. Sign those components manually. The exact commands for doing this vary depending on how your product is structured, so let’s consider a specific example. Imagine your product is a daemon but it also has an associated configuration app. Moreover, the configuration app has a share extension, and an embedded framework to share code between the app and the extension. When you build an Xcode archive from this project it has this structure: DaemonWithApp.xcarchive/ Info.plist Products/ usr/ local/ bin/ Daemon Applications/ ConfigApp.app/ Contents/ embedded.provisionprofile Frameworks/ Core.framework/ … PlugIns/ Share.appex/ Contents/ embedded.provisionprofile … … … The Products directory contains two items: the daemon itself (Daemon) and the configuration app (ConfigApp.app). To sign this product, first copy these items out of the archive: % mkdir "to-be-signed" % ditto "DaemonWithApp.xcarchive/Products/usr/local/bin/Daemon" "to-be-signed/Daemon" % ditto "DaemonWithApp.xcarchive/Products/Applications/ConfigApp.app" "to-be-signed/ConfigApp.app" IMPORTANT When you copy code, use ditto rather than cp. ditto preserves symlinks, which are critical to the structure of Mac frameworks. For more information on this structure, see Placing Content in a Bundle. Symlinks are also useful when dealing with nonstandard code structures. For more details, see Embedding Nonstandard Code Structures in a Bundle. The code you copy from the Xcode archive is typically development-signed: % codesign -d -vv to-be-signed/Daemon … Authority=Apple Development: … … To ship this code, you need to re-sign it for distribution. Confirm Your Code Signing Identity To sign code for distribution you need a code signing identity. Choose the right identity for your distribution channel: If you’re distributing an app on the Mac App Store, use an Apple Distribution code signing identity. This is named Apple Distribution: TTT, where TTT identifies your team. Alternatively, you can use the old school Mac App Distribution code signing identity. This is named 3rd Party Mac Developer Application: TTT, where TTT identifies your team. If you’re distributing a product independently, use a Developer ID Application code signing identity. This is named Developer ID Application: TTT, where TTT identifies your team. For information on how to set up these code signing identities, see Developer Account Help. To confirm that your code-signing identity is present and correct, run the following command: % security find-identity -p codesigning -v 1) A06E7F3F8237330EE15CB91BE1A511C00B853358 "Apple Distribution: …" 2) ADC03B244F4C1018384DCAFFC920F26136F6B59B "Developer ID Application: …" 2 valid identities found The -p codesigning argument filters for code-signing identities. The -v argument filters for valid identities only. If the code-signing identity that you need isn't listed, see Developer Account Help. Each output line includes a SHA-1 hash that uniquely identifies the identity. If you have multiple identities with the same name, sign your code using this hash rather than the identity name. Identify the Code to Sign To sign your product, first identify each code item that you need to sign. For example, in the DaemonWithApp product, there are four code items: ConfigApp.app, Core.framework, Share.appex, and Daemon. For each code item, determine the following: Is it bundled code? Is it a main executable? IMPORTANT For a code item to be considered bundled code it must be the main code within a bundle. If, for example, you have an app with a nested helper tool, there are two code items: the app and the helper tool. The app is considered bundle code but the helper tool is not. In some cases, it might not be obvious whether the code item is a main executable. To confirm, run the file command. A main executable says Mach-O … executable. For example: % file "to-be-signed/ConfigApp.app/Contents/Frameworks/Core.framework/Versions/A/Core" … … Mach-O 64-bit dynamically linked shared library x86_64 … % file "to-be-signed/ConfigApp.app/Contents/PlugIns/Share.appex/Contents/MacOS/Share" … … Mach-O 64-bit executable x86_64 … The Core.framework is not a main executable but Share.appex is. To continue the DaemonWithApp example, here’s a summary of this info for each of its code items: | Code Item | Bundled Code? | Main Executable | | --------- | ------------- | --------------- | | ConfigApp.app | yes | yes | | Core.framework | yes | no | | Share.appex | yes | yes | | Daemon | no | yes | Determine the Signing Order Sign code from the inside out. That is, if A depends on B, sign B before you sign A. For the DaemonWithApp example, the signing order for the app is: Core.framework Share.appex ConfigApp.app The app and daemon are independent, so you can sign them in either order. Configure Your Entitlements A code signature may include entitlements. These key-value pairs grant an executable permission to use a service or technology. For more information about this, see Entitlements. Entitlements only make sense on a main executable. When a process runs an executable, the system grants the process the entitlements claimed by its code signature. Do not apply entitlements to library code. It doesn’t do anything useful and can prevent your code from running. When signing a main executable, decide whether it needs entitlements. If so, create an entitlements file to use when signing that executable. This entitlements file is a property list containing the key-value pairs for the entitlements that the executable claims. If you build your product with Xcode, you might be able to use the .entitlements file that Xcode manages in your source code. If not, create the .entitlements file yourself. IMPORTANT The entitlements file must be a property list in the standard XML format with LF line endings, no comments, and no BOM. If you’re not sure of the file’s provenance, use plutil to convert it to the standard format. For specific instructions, see Ensure Properly Formatted Entitlements. If you have a development-signed version of your program you can get a head start on this by dumping its entitlements. For example: % codesign -d --entitlements - --xml "to-be-signed/ConfigApp.app" | plutil -convert xml1 -o - - … <dict> <key>com.apple.application-identifier</key> <string>SKMME9E2Y8.com.example.apple-samplecode.DaemonWithApp.App</string> <key>com.apple.developer.team-identifier</key> <string>SKMME9E2Y8</string> <key>com.apple.security.app-sandbox</key> <true/> <key>keychain-access-groups</key> <array> <string>SKMME9E2Y8.com.example.apple-samplecode.DaemonWithApp.SharedKeychain</string> </array> </dict> </plist> Keep in mind that some entitlements vary between development and distribution builds. For example: The value of the APS Environment (macOS) Entitlement changes from development to production. The com.apple.security.get-task-allow entitlement allows the debugger to attach to your program, so you rarely apply it to a distribution-signed program. To check whether an entitlement varies in distribution builds, see the documentation for that specific entitlement in Entitlements. For information about when it makes sense to distribute a program signed with the get-task-allow entitlement, see Avoid the Get-Task-Allow Entitlement section in Resolving Common Notarization Issues). Embed Distribution Provisioning Profiles In general, all entitlement claims must be authorized by a provisioning profile. This is an important security feature. For example, the fact that the keychain-access-groups entitlement must be authorized by a profile prevents other developers from shipping an app that impersonates your app in order to steal its keychain items. However, macOS allows programs to claim some entitlements without such authorization. These unrestricted entitlements include: com.apple.security.get-task-allow com.apple.security.application-groups Those used to enable and configure the App Sandbox Those used to configure the Hardened Runtime If your program claims a restricted entitlement, include a distribution provisioning profile to authorize that claim: Create the profile on the developer web site. Copy that profile into your program’s bundle. Note If your product includes a non-bundled executable that uses a restricted entitlement, package that executable in an app-like structure. For details on this technique, see Signing a Daemon with a Restricted Entitlement. To create a distribution provisioning profile, follow the instructions in Developer Account Help. Make sure to choose a profile type that matches your distribution channel (Mac App Store or Developer ID). Once you have a distribution provisioning profile, copy it into your program’s bundle. For information about where to copy it, see Placing Content in a Bundle. To continue the DaemonWithApp example, the configuration app and its share extension use a keychain access group to share secrets. The system grants the programs access to that group based on their keychain-access-groups entitlement claim, and such claims must be authorized by a provisioning profile. The app and the share extension each have their own profile. To distribute the app, update the app and share extension bundles with the corresponding distribution provisioning profile: % cp "ConfigApp-Dist.provisionprofile" "to-be-signed/ConfigApp.app/Contents/embedded.provisionprofile" % cp "Share-Dist.provisionprofile" "to-be-signed/ConfigApp.app/Contents/PlugIns/Share.appex/Contents/embedded.provisionprofile" Modifying the app in this way will break the seal on its code signature. This is fine because you are going to re-sign the app before distributing it. IMPORTANT If you’re building your product with Xcode then you might find that Xcode has embedded a provisioning profile within your bundle. This is a development provisioning profile. You must replace it with a distribution provisioning profile. Sign Each Code Item For all code types, the basic codesign command looks like this: % codesign -s III PPP Here III is the name of the code signing identity to use and PPP is the path to the code to sign. The specific identity you use for III varies depending on your distribution channel, as discussed in Confirm Your Code Signing, above. Note If you have multiple identities with the same name, supply the identity’s SHA-1 hash to specify it unambiguously. For information on how to get this hash, see Confirm Your Code Signing, above. When signing bundled code, as defined in Identify the Code to Sign, above, use the path to the bundle for PPP, not the path to the bundle’s main code. If you’re re-signing code — that is, the code you’re signing is already signed — add the -f option. If you’re signing a main executable that needs entitlements, add the --entitlements EEE option, where EEE is the path to the entitlements file for that executable. For information on how to create this file, see Configure Your Entitlements, above. If you’re signing for Developer ID distribution, add the --timestamp option to include a secure timestamp. If you’re signing a main executable for Developer ID distribution, add the -o runtime option to enable the Hardened Runtime. For more information about the Hardened Runtime, see Hardened Runtime. If you’re signing non-bundled code, add the -i BBB option to set the code signing identifier. Here BBB is the bundle ID the code would have if it had a bundle ID. For example, if you have an app whose bundle ID is com.example.flying-animals that has a nested command-line tool called pig-jato, the bundle ID for that tool would logically be com.example.flying-animals.pig-jato, and that’s a perfectly fine value to use for BBB. Note For bundled code, you don’t need to supply a code signing identifier because codesign defaults to using the bundle ID. Repeat this signing step for every code item in your product, in the order you established in Determine the Signing Order, above. If you have a complex product with many code items to sign, create a script to automate this process. Here's the complete sequence of commands to sign the DaemonWithApp example for Developer ID distribution: % codesign -s "Developer ID Application" -f --timestamp "to-be-signed/ConfigApp.app/Contents/Frameworks/Core.framework" to-be-signed/ConfigApp.app/Contents/Frameworks/Core.framework: replacing existing signature % codesign -s "Developer ID Application" -f --timestamp -o runtime --entitlements "Share.entitlements" "to-be-signed/ConfigApp.app/Contents/PlugIns/Share.appex" to-be-signed/ConfigApp.app/Contents/PlugIns/Share.appex: replacing existing signature % codesign -s "Developer ID Application" -f --timestamp -o runtime --entitlements "ConfigApp.entitlements" "to-be-signed/ConfigApp.app" to-be-signed/ConfigApp.app: replacing existing signature % codesign -s "Developer ID Application" -f --timestamp -o runtime -i "com.example.apple-samplecode.DaemonWithApp.Daemon" "to-be-signed/Daemon" to-be-signed/Daemon: replacing existing signature Consider Deep Harmful When signing code, do not pass the --deep option to codesign. This option is helpful in some specific circumstances but it will cause problems when signing a complex product. Specifically: It applies the same code signing options to every code item that it signs, something that’s not appropriate. For example, you might have an app with an embedded command-line tool, where the app and the tool need different entitlements. The --deep option will apply the same entitlements to both, which is a serious mistake. It only signs code that it can find, and it only finds code in nested code sites. If you put code in a place where the system is expecting to find data, --deep won’t sign it. The first issue is fundamental to how --deep works, and is the main reason you should avoid it. The second issue is only a problem if you don’t follow the rules for nesting code and data within a bundle, as documented in Placing Content in a Bundle. Revision History 2024-02-19 Added a preamble that links to the official documentation, Creating distribution-signed code for macOS. 2022-08-17 Updated the Confirm Your Code Signing Identity section to cover Apple Distribution code signing identities. Added a link to TN3110. 2022-03-01 First posted.
0
0
9.0k
Mar ’22
Transfer developer account to a new computer?
Hello, I've just got a new computer and now I want to transfer my developer account (certificates, keys etc.) to the new computer. Right now my developer membership has expired since I'm not doing any apps right now, but I might start again in the future. I'm not sure if I need to transfer anything, or if I will just get new certificates and keys when (if) I restart my membership? What do I need do, before I reset my old computer? I have developed apps for both for iOS and macOS.
4
1
3.2k
Sep ’21