

1

F R A M E W O R K

The Foundation Framework

Package:

com.webobjects.foundation

Introduction

The Foundation Framework defines a base layer of classes written in Java. In addition to
providing a set of useful primitive object classes, it introduces several paradigms that define
functionality not covered by the Java language. The Foundation Framework is designed with
these goals in mind:

■

Provide a small set of basic utility classes

■

Simplifies software development by introducing consistent conventions for things such as
notifications, object persistence, key-value coding, and validation.

■

Provide a level of OS independence, to enhance portability

This version of the Foundation framework is similar to the WebObjects 4.5 Foundation
framework (com.apple.yellow.foundation) but does not rely on the Java Bridge because it is
written in pure Java. The API for the pure Java Foundation also follows conventions in Sun’s API
more closely than the WebObjects 4.5 Foundation.

The pure Java Foundation resembles the WebObjects 4.5 Java Client Foundation
(com.apple.client.foundation) but provides a larger set of functions.

Foundation Framework Classes

The Foundation Framework consists of several related groups of classes as well as a few
individual classes:

■

Data storage. NSData provides object-oriented storage for arrays of bytes. NSArray,
NSDictionary, and NSSet provide storage for objects of any class.

2

F R A M E W O R K T h e F o u n d a t i o n F r a m e w o r k

■

Dates and times. The NSTimestamp and NSTimeZone classes store times and dates. They
offer methods for calculating date and time differences, for displaying dates and times in
many formats, and for adjusting times and dates based on location in the world. The
NSTimestampFormatter class converts dates to user-presentable strings and back.

■

Application coordination and timing. NSNotification and NSNotificationCenter provide
systems that an object can use to notify all interested observers of changes that occur.
NSDelayedCallbackCenter coordinates events.

■

Object distribution and persistence. The data that an object contains can be represented in an
architecture-independent way using NSCoder and its subclasses, which also stores class
information along with the data. The resulting representations are used for archiving and
object distribution.

■

Object disposal. The NSDisposable interface together with the NSDisposableRegistry ensure
that unused objects are collected by Java’s garbage collector.

■

Key-value coding. The NSKeyValueCoding and NSKeyValueCodingAdditions interfaces
along with their support classes provide a consistent way for objects to receive and return
values for keys.

■

Validation. The NSValidation interface and support classes define and implement a
consistent validation mechanism.

■

Locking of objects. The NSLock, NSRecursiveLock, and NSMultiReaderLock classes together
with the NSLocking interface coordinate the locking of objects or graphs of objects.

■

Operating system services. Several classes are designed to insulate you from the
idiosyncracies of various operating systems. NSPathUtilities provides a consistent interface
for working with file system paths. NSBundle accesses the application’s resources.

■

Other utility classes. NSRange specifies a range of values. NSComparator defines inequality
relationships between objects for sorting. NSUndoManager manages an application’s undo
function. NSForwardException wraps exceptions into a subclass of Java’s
RuntimeException. NSPropertyListSerialization converts between property lists and byte
arrays.

3

C L A S S

NSArray

Inherits from:

Object

Implements:

Cloneable
java.io.Serializable
NSCoding
NSKeyValueCoding
NSKeyValueCodingAdditions

Package:

com.webobjects.foundation

Class Description

NSArray and its subclass NSMutableArray manage collections of objects called

arrays

. NSArray
creates static arrays and NSMutableArray creates dynamic arrays.

4

C L A S S N S A r r a y

Table 0-1 describes the NSArray methods that provide the basis for all NSArray’s other methods;
that is, all other methods are implemented in terms of these three. If you create a subclass of
NSArray, you need only ensure that these base methods work properly. Having done so, you
can be sure that all your subclass's inherited methods operate properly.

The methods

objectEnumerator

 and

reverseObjectEnumerator

 grant sequential access to the elements of
the array, differing only in the direction of travel through the elements. These methods are
provided so that arrays can be traversed in a manner similar to that used for objects of other
collection classes in both the Java API and the Foundation Kit, such as java.util.Hashtable or
NSDictionary. See the

objectEnumerator

 method description for a code excerpt that shows how to
use these methods to access the elements of an array.

NSArray provides methods for querying the elements of the array.

indexOfObject

 searches the
array for the object that matches its argument. To determine whether the search is successful,
each element of the array is sent an

equals

 message. Another method,

indexOfIdenticalObject

, is
provided for the less common case of determining whether a specific object is present in the
array.

indexOfIdenticalObject

 tests each element in the array to see its the exact same instance as the
argument.

To act on the array as a whole, a variety of other methods are defined. You can extract a subset
of the array (

subarrayWithRange

) or concatenate the elements of an array of Strings into a single
string (

componentsJoinedByString

). In addition, you can compare two arrays using the

isEqualToArray

and

firstObjectCommonWithArray

 methods. Finally, you can create new arrays that contain the objects
in an existing array and one or more additional objects with

arrayByAddingObject

 and

arrayByAddingObjectsFromArray

.

Table 0-1

NSArray’s Base API

Method Description

count

Returns the number of elements in the array.

objectAtIndex

Provides access to the array elements by index.

objectsNoCopy

Returns a natural language array containing the NSArray’s
objects.

C L A S S N S A r r a y

5

Operators

An NSArray works with NSArray.Operators to perform operations on the array’s elements. By
default, an array has operators defined for the following keys:

To compute an operation on an array’s elements, you use key-value coding methods with a
specially formatted key. The character “@” introduces the name of the operator you want to
perform. For example, to compute the average salary of an array’s elements, you could use the
method

valueForKeyPath

 with “@avg.salary” as the key path. For more information, see the
NSArray.Operator interface specification.

If you write your own operator class, you can make it available for use with NSArrays with the
method

setOperatorForKey

. The

operatorNames

 method returns the keys for the operators that
NSArray knows about, and

operatorForKey

 returns the operator for a specified key.

Key Operator Description

count

Returns the number of elements in an array.

max

Returns the element in the array with the highest value.

min

Returns the element in the array with the lowest value.

avg

Returns the average of the array’s elements’ values.

sum

Returns the sum of the array’s element’s values.

6

C L A S S N S A r r a y

Constants

NSArray defines the following constants:

Constant Type Description

AverageOperatorN
ame

String

A key representing the operator (an NSArray.Operator) that
computes the average of the elements in an array.

CountOperatorNam
e

String

A key representing the operator (an NSArray.Operator) that
computes the number of elements in an array.

NotFound int

Returned in the place of an index when an object is not found in
an array. For example,

indexOfObject

 returns

NotFound

 if none of
the receiver’s objects are equal to the specified object.

MaximumOperatorN
ame

String

A key representing the operator (an NSArray.Operator) that
computes the largest element in an array.

MinimumOperatorN
ame

String

A key representing the operator (an NSArray.Operator) that
computes the smallest element in an array.

EmptyArray NSArray

An empty array, which can be shared to save memory.

SumOperatorName String

A key representing the operator (an NSArray.Operator) that
computes the sum of the elements in an array.

C L A S S N S A r r a y

7

Interfaces Implemented

Cloneable

clone

java.io.Serializable

NSCoding

decodeObject

classForCoder

encodeWithCoder

NSKeyValueCoding

takeValueForKey

valueForKey

NSKeyValueCodingAdditions

takeValueForKeyPath

valueForKeyPath

Method Types

Creating arrays

NSArray

immutableClone

mutableClone

arrayByAddingObject

8

C L A S S N S A r r a y

arrayByAddingObjectsFromArray

sortedArrayUsingComparator

subarrayWithRange

Querying the array

containsObject

count

getObjects

indexOfObject

indexOfIdenticalObject

lastObject

objectAtIndex

objects

objectsNoCopy

objectEnumerator

reverseObjectEnumerator

vector

Comparing arrays

firstObjectCommonWithArray

isEqualToArray

Working with string elements

componentsJoinedByString

componentsSeparatedByString

Operations

operatorForKey

operatorNames

setOperatorForKey

removeOperatorForKey

C L A S S N S A r r a y

9

Methods inherited from Object

equals

hashCode

toString

Sending messages to elements

makeObjectsPerformSelector

Constructors

NSArray

public NSArray()

Creates an empty, immutable array. After an immutable array has been initialized in this way,
it can’t be modified. If you need an empty, immutable array, use

EmptyArray

 instead. This method
is used by mutable subclasses of NSArray.

public NSArray(NSArray

anArray

)

Creates an array containing the objects in

anArray

. After an immutable array has been initialized
in this way, it can’t be modified.

public NSArray(Object

anObject

)

Creates an array containing the single element

anObject

. After an immutable array has been
initialized in this way, it can’t be modified. Throws an IllegalArgumentException if

anObject

 is

null

.

public NSArray(Object[]

objects

)

Creates an array containing

objects

. Ignores any

null

 values it encounters in

objects

. After an
immutable array has been initialized in this way, it can’t be modified.

10

C L A S S N S A r r a y

public NSArray(
Object[]

objects

,
NSRange

aRange

)

Creates an array containing the objects from

objects

 in the range specified by

aRange

. Ignores any

null

 values it encounters in

objects

. After an immutable array has been initialized in this way, it
can’t be modified.

public NSArray(
java.util.Vector

aVector

,
NSRange

aRange

,
boolean

checkForNull

)

Creates an array containing the objects from

aVector

 in the range specified by

aRange

. After an
immutable array has been initialized in this way, it can’t be modified. The

checkForNull

 argument
controls the method’s behavior when it encounters a

null

 value in the vector: if

checkForNull

 is

true

,
the

null

 value is simply ignored. If

checkForNull

 is false, the method raises an
IllegalArgumentException.

Static Methods

componentsSeparatedByString

public static NSArray componentsSeparatedByString(
String

string

,
String

separator

)

Returns an array containing substrings from

string

 that have been divided by

separator

. The
substrings in the array appear in the order they did in the receiver. If the string begins or ends
with the separator, the first or last substring, respectively, is empty. For example, this code
excerpt:

String list = “wrenches, hammers, saws”;
NSArray listItems = NSArray.componentsSeparatedByString (“, “);

C L A S S N S A r r a y

11

produces an array with these contents:

If list begins with a comma and space the array has these contents:

If list has no separators—for example, “wrenches”—the array contains the string itself, in this
case “wrenches”.

See Also: componentsJoinedByString

decodeObject

public static Object decodeObject(NSCoder coder)

Creates and returns an NSArray from the data in coder.

See Also: NSCoding Interface Description

operatorForKey

public static NSArray.Operator operatorForKey(String operatorName)

Returns the operator for the operator named operatorName.

See Also: “Operators” (page 5)

Index Substring

0 wrenches

1 hammers

2 saws

Index Substring

0 (empty string)

1 wrenches

2 hammers

3 saws

12

C L A S S N S A r r a y

operatorNames

public static NSArray operatorNames()

Returns the names of the operations that can be performed on array elements. By default the
operations are count, max, min, avg, and sum.

See Also: “Operators” (page 5)

removeOperatorForKey

public static void removeOperatorForKey(String operatorName)

Removes the operator identified by operatorName from the list of operators that can be performed
on array elements.

See Also: “Operators” (page 5)

setOperatorForKey

public static void setOperatorForKey(
String key,
NSArray.Operator operator)

Sets the operator for key to operator. Throws an IllegalArgumentException if either key or operator
are null.

See Also: “Operators” (page 5)

Instance Methods

arrayByAddingObject

public NSArray arrayByAddingObject(Object anObject)

Returns a new array that is a copy of the receiver with anObject added to the end. If anObject is null,
an IllegalArgumentException is thrown.

See Also: addObject (NSMutableArray)

C L A S S N S A r r a y

13

arrayByAddingObjectsFromArray

public NSArray arrayByAddingObjectsFromArray(NSArray otherArray)

Returns a new array that is a copy of the receiver with the objects contained in otherArray added
to the end.

See Also: addObjectsFromArray (NSMutableArray)

classForCoder

public Class classForCoder()

Conformance to NSCoding. NSArray’s implementation returns the class NSArray, so subclasses
that don’t override this method (such as NSMutableArray) are encoded as instances of NSArray.

See Also: classForCoder (NSCoding)

clone

public Object clone()

Simply returns the receiver. Since NSArrays are immutable, there’s no need to make an actual
clone.

componentsJoinedByString

public String componentsJoinedByString(String separator)

Constructs and returns a String that is the result of interposing separator between the elements of
the receiver’s array. For example, this code excerpt writes the path System/Developer to the console:

NSArray pathArray = new NSArray(new Object[] {‘System’, ‘Developer’});
System.out.println(‘The path is ‘+ pathArray.componentsJoinedByString(‘/’) + ‘.’);

Each element in the receiver’s array must handle either description, or if it is not implemented,
toString. If the receiver has no elements, a String representing the empty string is returned.

See Also: componentsSeparatedByString

14

C L A S S N S A r r a y

containsObject

public boolean containsObject(Object anObject)

Returns true if the receiver contains an object equal to anObject. This method determines whether
an object is present in the array by sending an equals message to each of the array’s objects (and
passing anObject as the parameter to each equals message).

count

public int count()

Returns the number of objects currently in the array.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding. See the method description for encodeWithCoder in the NSCoding
interface specification.

equals

public boolean equals(Object anObject)

Returns true if anObject is an NSArray and its contents are equal to the receiver’s or false
otherwise. If you know that anObject is an NSArray, use the more efficient method isEqualToArray
instead.

firstObjectCommonWithArray

public Object firstObjectCommonWithArray(NSArray otherArray)

Returns the first object contained in the receiver that’s equal to an object in otherArray, or null if no
such object is found. This method uses equals to check for object equality.

C L A S S N S A r r a y

15

getObjects

public void getObjects(Object[] buffer[])

Deprecated. Use public Object[] objects() instead.

public void getObjects(
Object[] buffer[],
NSRange aRange)

Deprecated. Use public Object[] objects(NSRange) instead.

hashCode

public int hashCode()

See the method description for hashCode in the Object class specification.

immutableClone

public NSArray immutableClone()

Returns an immutable copy of the receiver. Since an NSArray is immutable, NSArray’s
implementation simply returns the receiver. Subclasses such as NSMutableArray should
override this method to create an immutable copy of the reciever.

indexOfIdenticalObject

public int indexOfIdenticalObject(Object anObject)

Searches all objects in the receiver for anObject (testing for equality by comparing object
addresses) and returns the lowest index whose corresponding array value is identical to anObject.
If none of the objects in the receiver are identical to anObject, this method returns NotFound.

16

C L A S S N S A r r a y

public int indexOfIdenticalObject(
Object anObject,
NSRange aRange)

Searches the specified range within the receiver for anObject (testing for equality by comparing
object addresses) and returns the lowest index whose corresponding array value is identical to
anObject. If none of the objects in the range are identical to anObject, this method returns NotFound.
Throws an IllegalArgumentException if aRange is out of bounds.

indexOfObject

public int indexOfObject(Object anObject)

Searches all objects in the receiver for anObject and returns the lowest index whose corresponding
array value is equal to anObject. Objects are considered equal if equals returns true. If none of the
specified objects are equal to anObject, returns NotFound.

public int indexOfObject(
Object anObject,
NSRange aRange)

Searches the specified range within the receiver for anObject and returns the lowest index whose
corresponding array value is equal to anObject. Objects are considered equal if equals returns true.
If none of the specified objects are equal to anObject, returns NotFound. Throws an
IllegalArgumentException if aRange is out of bounds.

isEqualToArray

public boolean isEqualToArray(NSArray otherArray)

Compares the receiving array to otherArray, returning true if the contents of otherArray are equal to
the contents of the receiver, false otherwise. Two arrays have equal contents if they each hold the
same number of objects and objects at a given index in each array satisfy the equals test.

lastObject

public Object lastObject()

Returns the object in the array with the highest index value. If the array is empty, lastObject
returns null.

C L A S S N S A r r a y

17

makeObjectsPerformSelector

public void makeObjectsPerformSelector(
NSSelector selector,
Object[] anObject[])

Invokes the method specified by selector on each object in the receiver. The method is invoked
each time with the values in anObject as the method’s parameters. The method shouldn't, as a side
effect, modify the receiver’s collection of objects. The messages are sent using NSSelector’s invoke
method.

mutableClone

public NSMutableArray mutableClone()

Returns a mutable copy of the receiver. NSArray’s implementation creates an NSMutableArray
with the receiver’s elements, not copies.

objectAtIndex

public Object objectAtIndex(int index)

Returns the object located at index. If the receiver is empty or if index is beyond the end of the array
(that is, if index is greater than or equal to the value returned by count), an
IllegalArgumentException is thrown.

See Also: count

objectEnumerator

public java.util.Enumeration objectEnumerator()

Returns an enumeration that lets you access each object in the array, in order, starting with the
element at index 0. For example, consider the following code excerpt:

java.util.Enumeration enumerator = myArray.objectEnumerator();

while (enumerator.hasMoreElements()) {
Object anObject = enumerator.nextElement();
/* code to act on each element */

}

18

C L A S S N S A r r a y

When this method is used with mutable subclasses of NSArray, your code shouldn’t modify the
array during enumeration.

See Also: reverseObjectEnumerator

objects

public Object[] objects()

Returns copies of the receiver’s elements in a natural language array.

public Object[] objects(NSRange aRange)

Returns copies of the receiver’s elements that fall within the limits specified by aRange in a natural
language array.

objectsNoCopy

protected Object[] objectsNoCopy()

Returns the receiver’s actual elements—not copies—in a natural language array.

reverseObjectEnumerator

public java.util.Enumeration reverseObjectEnumerator()

Returns an enumeration that lets you access each object in the array, in order, from the element
at the highest index down to the element at index 0. For example, consider the following code
excerpt:

java.util.Enumeration enumerator = myArray.reverseObjectEnumerator();

while (enumerator.hasMoreElements()) {
Object anObject = enumerator.nextElement();
/* code to act on each element */

}

When this method is used with mutable subclasses of NSArray, your code shouldn’t modify the
array during enumeration.

See Also: objectEnumerator

C L A S S N S A r r a y

19

sortedArrayUsingComparator

public NSArray sortedArrayUsingComparator(NSComparator comparator)
throws NSComparator.ComparisonException

Returns an array that lists the receiver’s elements, as determined by comparator. The new array
contains the receiver’s elements, not copies of them. Throws if the comparator’s compare method
throws for any reason.

sortedArrayUsingSelector

public NSArray sortedArrayUsingSelector(NSSelector selector) throws NSComparator.ComparisonException

Deprecated. Use sortedArrayUsingComparator instead.

subarrayWithRange

public NSArray subarrayWithRange(NSRange aRange)

Returns a new array containing the receiver’s elements that fall within the limits specified by
aRange. If aRange isn’t within the receiver’s range of elements, an IndexOutOfBoundsException is
thrown.

For example, the following code example creates an array containing the elements found in the
first half of wholeArray (assuming wholeArray exists).

NSRange theRange = new NSRange(0, wholeArray.count()/2);
NSArray halfArray = wholeArray.subarrayWithRange(theRange);

takeValueForKey

public void takeValueForKey(
Object value,
String key)

Conformance to NSKeyValueCoding. For each element in the receiver, NSArray’s
implementation sets the element’s value for key to value. For example, if key is “firstName” and
value is “Unknown”, this method sets the firstName property of each of the receiver’s elements to
“Unknown”.

20

C L A S S N S A r r a y

takeValueForKeyPath

public void takeValueForKeyPath(
Object value,
String key)

Conformance to NSKeyValueCodingAdditions. For more information, see the takeValueForKeyPath
method description in the NSKeyValueCodingAdditions interface specification.

toString

public String toString()

Returns a string representation of the receiver.

valueForKey

public Object valueForKey(String key)

Conformance to NSKeyValueCoding. NSArray’s implementation is more complex than the
default:

■ If key indicates an operation that doesn’t require an argument (such as returning the array’s
count), valueForKey performs the operation and returns the result. key indicates an operation if
its first character is “@”. For example, if key is “@count”, valueForKey invokes compute on the
“count” operator. This has the effect of computing and returning the number of elements in
the receiver. Don’t use valueForKey for operations that take arguments; instead use
valueForKeyPath.

■ For any other key, valueForKey creates an array with the same number of elements as the
receiver. For each element in the receiver, the corresponding element in the new array is the
value for key of the receiver’s element. For example, if key is “firstName”, this method returns
an array containing the firstName values for the receiver’s elements. The key argument can be
a key path of the form relationship.property; for example, “department.name”. valueForKey
replaces null values with an instance of NSKeyValueCoding.Null.

See Also: “Operators” (page 5)

C L A S S N S A r r a y

21

valueForKeyPath

public Object valueForKeyPath(String keyPath)

Conformance to NSKeyValueCodingAdditions. NSArray’s implementation is more complex
than the default:

■ If key indicates an operation takes an argument (such as computing an average),
valueForKeyPath performs the operation and returns the result. key indicates an aggregate
operation if its first character is “@”. For example, if key is “@avg.salary”, valueForKey invokes
compute on the “avg” operator specifying the receiver and “salary” as arguments. This has the
effect of computing and returning the average salary of the receiver’s elements.

■ Otherwise, valueForKeyPath invokes the default implementation of valueForKeyPath. For more
information see the method description for valueForKeyPath in the
NSKeyValueCodingAdditions interface specification.

See Also: “Operators” (page 5)

vector

public java.util.Vector vector()

Returns the receiver as a Vector.

22

C L A S S N S A r r a y

23

C L A S S

NSBundle

Inherits from: Object

Package: com.webobjects.foundation

Class Description

An NSBundle represents a location in the file system that groups code and resources that can be
used in a program. NSBundles locate program resources and assist in localization. You build a
bundle in Project Builder using a Java WebObjects Application or Java WebObjects Framework
project.

An NSBundle is an object that corresponds to a directory where related resources—including
executable code—are stored. The directory, in essence, “bundles ” a set of resources used by an
application into convenient chunks, and the NSBundle object makes those resources available to
the application. NSBundle can find requested resources in the directory. The term bundle refers
both to the object and to the directory it represents.

Bundles are useful in a variety of contexts. Since bundles combine executable code with the
resources used by that code, they facilitate installation and localization. NSBundles are also used
to locate specific resources and to determine which classes are loaded.

Each resource in a bundle usually resides in its own file. Bundled resources include such things
as:

■ Images—GIF or JPEG images displayed on web pages

■ Localized character strings

24

C L A S S N S B u n d l e

Types of Bundles
NSBundle supports two types of bundles: application bundles and framework bundles.

Application Bundles

An application bundle is a bundle that contains the resources needed to launch the application.
Its extension is “.woa”. To build an application bundle with Project Builder, use the Java
WebObjects Application project type.

Every application has a single application bundle called the “main bundle”. You obtain an
NSBundle object corresponding to the main bundle with the mainBundle static method. This is
typically the running application itself.

Framework Bundles

A framework bundle is a bundle associated with a framework: a directory containing shared
classes along with the resources that go with those classes, such as images and localized strings.
A framework directory has a “.framework” extension. To build a framework bundle with Project
Builder, use the Java WebObjects Framework project type.

You can get an NSBundle object associated with a framework by invoking the static method
bundleForName specifying, as the argument, the name of the framework sans the “.framework”
extension. Alternatively you can invoke the bundleForClass method specifying a class that’s
defined in the framework. To get all the framework bundles available to your application, you
can invoke the frameworkBundles static method.

Bundle Availability
When an application starts up, it loads all of the bundles represented by class path components.
If the class path contains multiple framework bundles with the same name, only the first one is
loaded; the rest are ignored.

If you are unsure which bundles are loaded at startup, you can enable NSBundle debugging by
setting the NSBundleDebugEnabled user default to YES. NSBundle subsequently logs the paths to the
bundles as it loads them.

C L A S S N S B u n d l e

25

Localized Resources
If an application is to be used in more than one part of the world, its resources may need to be
customized, or “localized,” for language, country, or cultural region. An application may need,
for example, to have separate Japanese, English, French, German, and Spanish versions of the
images that label submit buttons.

Resources specific to a particular language are grouped together in a resource directory. This
directory has the name of the language (in English) followed by a “.lproj” extension (for
“language project”). The application mentioned above, for example, would have Japanese.lproj,
English.lproj, French.lproj, German.lproj, and Spanish.lproj directories. The application also has a
Nonlocalized.lproj directory, which contains resources shared by all locales.

It is good programming practice to ensure that if a resource appears in one language directory
it also appears in all the others. Thus, Icon.gif in French.lproj should be the French counterpart to
the Spanish Icon.gif in Spanish.lproj, and so on. However this discipline is not completely
necessary. If German.lproj does not contain an Icon.gif resource, the Icon.gif resource in
Nonlocalized.lproj will be used instead.

The server’s locale determines which set of localized resources will actually be used by the
application. NSBundle objects invoke the java.util.Locale.getDefault method to determine the
locale and chooses the localized resources accordingly.

How Resources Appear on the File System
A bundle's resources are stored in a directory named Resources within the bundle directory on the
file system. Within the Resources directory are all of the language directories except
Nonlocalized.lproj. The non-localized resources in the Nonlocalized.lproj directory are mapped into
the top level of the Resources directory on the file system.

For example, suppose the NSBundle resources are organized as shown below:

Listing 0-1 Resource organization example

English.lproj
Edit.wo

Edit.html
Edit.wod
Edit.woo

26

C L A S S N S B u n d l e

Nonlocalized.lproj
Edit.wo

Edit.html
Edit.wod
Edit.woo

Images
Icon.gif
Background.jpeg

Main.wo
Main.html
Main.wod
Main.woo

These resources appear on the file system as:

Listing 0-2 How the resources appear on the file system

Resources
Edit.wo

Edit.html
Edit.wod
Edit.woo

Images
Icon.gif
Background.jpeg

Main.wo
Main.html
Main.wod
Main.woo

English.lproj
Edit.wo

Edit.html
Edit.wod
Edit.woo

C L A S S N S B u n d l e

27

Determining Available Resources
NSBundle provides two methods to determine the resources it contains: resourcePathsForResources
and resourcePathsForLocalizedResources. These methods return resource paths, or paths specified
according to NSBundle’s resource organization, not the resource organization as it appears on
the file system. For example, the resource path to the Background.jpeg resource in Listing 0-1 is
Nonlocalized.lproj/Images/Background.jpeg.

resourcePathsForResources

The resourcePathsForResources method takes two arguments: a subdirectory and an extension. The
method returns an NSArray containing resource path strings for the resources in the specified
subdirectory that have the specified extension. If you specify null for the subdirectory, the
method returns the resource paths for the resources starting from the top level. If you specify
null for the extension, the method will not filter resources according to their extension. Table 0-2
shows examples of invoking resourcePathsForResources with various parameters for the bundle
depicted in Listing 0-1.

Table 0-2 Results from invoking resourcePathsForResources.

extension subdirectory Result

null null { “English.lproj/Edit.wo/Edit.html”, “English.lproj/Edit.wo/
Edit.wod”, “English.lproj/Edit.wo/Edit.woo”, “English.lproj/Images/
Icon.gif”, “Nonlocalized.lproj/Edit.wo/Edit.html”,
“Nonlocalized.lproj/Edit.wo/Edit.wod”, “Nonlocalized.lproj/Edit.wo/
Edit.woo”, Nonlocalized.lproj/Images/Icon.gif”, “Nonlocalized.lproj/
Images/Background.jpeg”, “Nonlocalized.lproj/Main.wo/Main.html”,
“Nonlocalized.lproj/Main.wo/Main.wod”, “Nonlocalized.lproj/Main.wo/
Main.woo” }

“gif” null { “English.lproj/Images/Icon.gif”, “Nonlocalized.lproj/Images/
Icon.gif” }

null “English.lproj” { “English.lproj/Edit.wo/Edit.html”, “English.lproj/Edit.wo/
Edit.wod”, “English.lproj/Edit.wo/Edit.woo”, “English.lproj/Images/
Icon.gif” }

“gif” “English.lproj” { “English.lproj/Images/Icon.gif” }

28

C L A S S N S B u n d l e

resourcePathsForLocalizedResources

The resourcePathsForLocalizedResources method returns an NSArray of resource paths to resources
that are appropriate for the current locale. If a resource appears in more than one language
directory, this method chooses whether to include it in the array based on the following criteria:

■ If the resource appears in the language directory for the current locale, the method includes
its path in the results array.

■ If the resource appears in Nonlocalized.lproj but not in the current locale’s language
directory, the method includes its path in the results array.

■ If the resource doesn’t appear in Nonlocalized.lproj or the current locale’s language directory
the method does not include its path in the results array.

The resourcePathsForLocalizedResourcesmethod also takes the extension and subdirectory arguments
that allow you to filter the result array based on the extension or subdirectory. Table 0-3 shows
examples of invoking resourcePathsForLocalizedResources with various parameters for the bundle
depicted in Listing 0-1.

Table 0-3 Results of invoking resourcePathsForLocalizedResources

extension subdirectory Result

null null { “English.lproj/Edit.wo/Edit.html”, “English.lproj/Edit.wo/
Edit.wod”, “English.lproj/Edit.wo/Edit.woo”, “Nonlocalized.lproj/
Images/Icon.gif”, “Nonlocalized.lproj/Images/Background.jpeg”,
”Nonlocalized.lproj/Main.wo/Main.html”, “Nonlocalized.lproj/Main.wo/
Main.wod”, “Nonlocalized.lproj/Main.wo/Main.woo” }

“html” null { “English.lproj/Edit.wo/Edit.html”, “Nonlocalized.lproj/Main.wo/
Main.html” }

null “Edit.wo” { “English.lproj/Edit.wo/Edit.html”, “English.lproj/Edit.wo/
Edit.wod”, “English.lproj/Edit.wo/Edit.woo” }

“html” “Edit.wo” { “English.lproj/Edit.wo/Edit.html” }

C L A S S N S B u n d l e

29

resourcePathsForDirectories

NSBundle also includes a method called resourcePathsForDirectories that returns the directories
containing resources. It also takes the extension and subdirectory parameters. Table 0-4 shows
examples of invoking resourcePathsForDirectories with various parameters for the bundle depicted
in Listing 0-1.

Accessing NSBundle Resources
NSBundle provides two methods to access resources: bytesForResourcePath and
inputStreamForResourcePath. Both methods require a single argument: a full resource path as
returned by the resourcePathsForResources and resourcePathsForLocalizedResources methods. The
bytesForResourcePath method returns a byte array containing data for the resource specified by the
path. The inputStreamForResourcePath returns an java.io.InputStream for the resource specified by
the path.

Sometimes you want to access a localized resource without specifying the full resource path. For
example, if you might want to get the Icon.gif resource appropriate for the current locale. To do
this, you invoke resourcePathForLocalizedResourceNamed to determine the full resource path for the
localized resource and, in turn, invoke bytesForResourcePath or inputStreamForResourcePath with the
full path.

The resourcePathForLocalizedResourceNamed method first searches the current locale’s language
directory for the resource then the Nonlocalized.lproj directory. If it finds the resource, it returns
the resource’s path. Otherwise it returns null. You can specify a subdirectory for the method to
search in. For example, if the current locale is English, and the resources are organized as shown

Table 0-4 Results of invoking resourcePathsForDirectories

extension subdirectory Result

null null { “English.lproj/Edit.wo”, “English.lproj/Images”,
“Nonlocalized.lproj/Edit.wo”, “Nonlocalized.lproj/Images”,
“Nonlocalized.lproj/Main.wo” }

“wo” null { “Nonlocalized.lproj/Main.wo”, “Nonlocalized.lproj/Edit.wo”,
“English.lproj/Edit.wo” }

null “English.lproj” { “English.lproj/Edit.wo”, “English.lproj/Images” }

“wo” “English.lproj” { “English.lproj/Edit.wo” }

30

C L A S S N S B u n d l e

in Listing 0-1, and you invoke resourcePathForLocalizedResourceNamed for the “Edit.html” resource in
the “Edit.wo” subdirectory, the method returns “English.lproj/Edit.wo/Edit.html”. If the current
locale is German, the method returns “Nonlocalized.lproj/Edit.wo/Edit.html”.

Method Types

Accessing resources

bytesForResourcePath

inputStreamForResourcePath

Finding bundles

frameworkBundles

bundleForClass

bundleForName

mainBundle

Getting resource paths

resourcePathsForDirectories

resourcePathForLocalizedResourceNamed

resourcePathsForLocalizedResources

resourcePathsForResources

Getting bundle class information

bundleClassPackageNames

bundleClassNames

Getting bundle attributes

isFramework

name

principalClass

C L A S S N S B u n d l e

31

properties

Methods inherited from Object

toString

Deprecated methods

allBundles

allFrameworks

bundlePath

bundleWithPath

infoDictionary

load

pathForResource

pathsForResources

resourcePath

Static Methods

allBundles

public synchronized static NSArray allBundles()

Deprecated in the Java Foundation framework. Don’t use this method. The only non-framework
bundle that an application can access without deprecated API is the main bundle. Use mainBundle
instead.

Returns an array containing all the non-framework bundles available to the application.

32

C L A S S N S B u n d l e

allFrameworks

public static NSArray allFrameworks()

Deprecated in the Java Foundation framework. Don’t use this method. Use frameworkBundles
instead.

Returns an array containing the bundles for all the frameworks included in the application.

bundleForClass

public synchronized static NSBundle bundleForClass(Class aClass)

Returns the bundle containing the class aClass.

bundleForName

public synchronized static NSBundle bundleForName(String name)

Returns the bundle with the specified name. See name for more information about how the name
relates to the bundle on the file system.

bundleWithPath

public static NSBundle bundleWithPath(String path)

Deprecated in the Java Foundation framework. Don’t use this method. To access a bundle that
was loaded when the application started, use bundleForName or bundleForClass.

Returns an NSBundle that corresponds to the specified directory path or returns null if path does
not identify an accessible bundle directory.

If the bundle object for the specified directory doesn’t already exists, this method creates the
returned bundle.

frameworkBundles

public synchronized static NSArray frameworkBundles()

Returns an array containing the bundles for all the frameworks included in the application.

C L A S S N S B u n d l e

33

mainBundle

public static NSBundle mainBundle()

Returns the application’s main bundle. In general, the main bundle corresponds to an
application file package or application wrapper: a directory that bears the name of the
application and is marked by a “.woa” extension.

Instance Methods

bundleClassNames

public NSArray bundleClassNames()

Returns an array containing the names of all the receiver’s classes.

bundleClassPackageNames

public NSArray bundleClassPackageNames()

Returns an array containing the names of all the packages containing the receiver’s classes.

bundlePath

public String bundlePath()

Deprecated in the Java Foundation framework. Don’t use this method. You should not need to
know the file system path to the bundle directory.

Returns the full file system path name of the receiver’s bundle directory.

34

C L A S S N S B u n d l e

bytesForResourcePath

public byte[] bytesForResourcePath(String resourcePath)

Returns a byte array containing the data for the resource specified by resourcePath. The resource
path must be specified relative to the top level of the resources hierarchy, that is, the directory
containing the language subdirectories. Note that the resource path for a resource is not the same
as its file system path. See “Determining Available Resources” (page 27) for more information
about resource paths.

infoDictionary

public NSDictionary infoDictionary()

Deprecated in the Java Foundation framework. Don’t use this method.

Returns a dictionary that contains information about the receiver. This information is extracted
from the property list associated with the bundle. The CustomInfo.plist file is a source file for the
bundle’s property list.

inputStreamForResourcePath

public java.io.InputStream inputStreamForResourcePath(String resourcePath)

Returns an input stream for the resource specified by resourcePath. The resource path must be
specified relative to the top level of the resources hierarchy, that is, the directory containing the
language subdirectories. Note that the resource path for a resource is not the same as its file
system path. See “Determining Available Resources” (page 27) for more information about
resource paths.

isFramework

public boolean isFramework()

Returns whether the receiver represents a framework or not.

C L A S S N S B u n d l e

35

load

public boolean load()

Deprecated in the Java Foundation framework. Don’t use this method. Dynamic loading is no
longer supported.

Returns true if the bundle was loaded at application startup, otherwise returns false.

name

public String name()

Returns the name of the bundle. If the bundle is a Java WebObjects Application, this method
returns the name of the directory containing the application without the “.woa” extension. If the
bundle is a Java WebObjects Framework, this method returns the name of the directory
containing the framework without the “.framework” extension.

pathForResource

public String pathForResource(
String name,
String extension)

Deprecated in the Java Foundation framework. Don’t use this method. Use
resourcePathForLocalizedResourceNamed instead.

Returns the full file system path name for the resource identified by name with the specified file
extension. If the extension argument is null or an empty string (“”), the resource sought is
identified by name, with any (or no) extension. The method first looks for a non-localized resource
in the immediate bundle directory; if the resource is not there, it looks for the resource in the
language-specific “.lproj” directory (the local language is determined by user defaults).

public String pathForResource(
String name,
String extension,
String bundlePath)

Deprecated in the Java Foundation framework. Don’t use this method. Use
resourcePathForLocalizedResourceNamed instead.

36

C L A S S N S B u n d l e

Returns the full file system path name for the resource identified by name, with the specified file
name extension, and residing in the directory bundlePath; returns null if no matching resource file
exists in the bundle. The argument bundlePath must be a valid bundle directory or null. The
argument extension can be an empty string or null; in either case the pathname returned is the first
one encountered with name, regardless of the extension. The method searches in this order:

<main bundle path>/Resources/bundlePath/name.extension

<main bundle path>/Resources/bundlePath/<language.lproj>/name.extension

<main bundle path>/bundlePath/name.extension

<main bundle path>/bundlePath/<language.lproj>/name.extension

The order of language directories searched corresponds to the user’s preferences. If bundlePath is
null, the same search order as described above is followed, minus bundlePath.

pathsForResources

public NSArray pathsForResources(
String extension,
String bundlePath)

Deprecated in the Java Foundation framework. Don’t use this method. Use
resourcePathsForResources instead.

Returns an array containing file system path names for all bundle resources having the specified
file name extension and residing in the directory bundlePath; returns an empty array if no
matching resource files are found. This method provides a means for dynamically discovering
bundle resources. The argument bundlePath must be a valid bundle directory or null. The extension
argument can be an empty string or null; if you specify either of these for extension, all bundle
resources are returned. Although there is no guaranteed search order, all of the following
directories will be searched:

<main bundle path>/Resources/bundlePath/name.extension

<main bundle path>/Resources/bundlePath/<language.lproj>/name.extension

<main bundle path>/bundlePath/name.extension

Note: These methods search for resources based on the resource organization on the file
system, not the internal NSBundle resource organization as described in the NSBundle class
description. Specifically, these methods do not support the “Nonlocalized.lproj” directory. Also,
the methods do not “drill-down” into the subdirectories of the specified bundle path (except
for the language.lproj subdirectories).

C L A S S N S B u n d l e

37

<main bundle path>/bundlePath/<language.lproj>/name.extension

The language directories searched corresponds to the current locale. If bundlePath is null, the same
search order as described above is followed, minus bundlePath.

principalClass

public Class principalClass()

Returns the NSBundle’s principal class. The principal class is responsible for ensuring that all
classes in the framework are properly initialized. The NSBundle determines its principal class
based on the bundle’s property list. The property list represents a dictionary; the principle class
is the value obtained using the key NSPrincipalClass. If the principal class is not specified in the
property list, the method returns null.

If you create a framework that needs to be initialized using a principal class, you must specify
the class name in the CustomInfo.plist file, a source file for the bundle’s property list. For example,
if your principal class is myPackage.myPrincipalClass, your CustomInfo.plist file should look like:

{
NSPrincipalClass = myPackage.myPrincipalClass;

}

properties

public java.util.Properties properties()

Returns the receiver’s properties. These properties are located in the Properties file in the Resources
subdirectory of the directory corresponding to the receiver. See the NSProperties class for more
information about the Properties file.

Note: This method searches for resources based on the resource organization on the file
system, not the internal NSBundle resource organization as described in the NSBundle class
description. Specifically, these methods do not support the “Nonlocalized.lproj” directory. Also,
the methods do not “drill-down” into the subdirectories of the specified bundle path (except
for the language.lproj subdirectories).

38

C L A S S N S B u n d l e

resourcePath

public String resourcePath()

Deprecated in the Java Foundation framework. Don’t use this method. Resources are now
accessed using the bytesForResourcePath and inputStreamForResourcePath methods.

Returns the full file system path name of the receiving bundle’s subdirectory containing
resources.

resourcePathsForDirectories

public NSArray resourcePathsForDirectories(String extension,
String subdirectory)

Returns an array containing the resource paths of all the directories with the specified extension
beneath the specified subdirectory. If extension is null, the method includes directories regardless
of extension. If subdirectory is null, the method returns directories beneath the top level directory
(the one containing the language directories). For examples of how this method is used, see
“Determining Available Resources” (page 27).

See Also: resourcePathsForResources, resourcePathsForLocalizedResources

resourcePathForLocalizedResourceNamed

public String resourcePathForLocalizedResourceNamed(String name,
String subdirectory)

Returns the resource path for the localized resource with the specified name within the specified
subdirectory. This method determines the resource path based on the current locale. See
“Accessing NSBundle Resources” (page 29) for more information about how this method
chooses the resource path it returns.

Note: In the Java Foundation Framework, the term resource path refers to the full specification
of the location of a resource in an NSBundle. In previous versions of the Foundation
Framework, the term resource path referred to the file system path to the directory containing a
bundle’s resources.

C L A S S N S B u n d l e

39

If subdirectory is null, the method returns a resource path for a localized resource at the language
directory level.

See Also: resourcePathsForLocalizedResources, resourcePathsForResources, resourcePathsForDirectories

resourcePathsForLocalizedResources

public NSArray resourcePathsForLocalizedResources(String extension,
String subdirectory)

Returns an array containing the resource paths for all of the receiver’s resources that are
appropriate for the current locale, have the specified file extension, and lie within the specified
subdirectory. See “Determining Available Resources” (page 27) for more information about how
this method chooses the resource paths it returns.

If extension is null, the method includes localized resources regardless of extension. If subdirectory
is null, the method returns localized resources beneath the top level directory (the one containing
the language directories).

See Also: resourcePathsForResources, resourcePathsForDirectories

resourcePathsForResources

public NSArray resourcePathsForResources(String extension,
String subdirectory)

Returns an array containing the resource paths of all of the receiver’s resources that have the
specified file extension and lie within the specified subdirectory. For examples of how this
method is used, see “Determining Available Resources” (page 27).

If extension is null, the method includes resources regardless of extension. If subdirectory is null, the
method returns resources beneath the top level directory (the one containing the language
directories).

See Also: resourcePathsForLocalizedResources, resourcePathsForDirectories

40

C L A S S N S B u n d l e

toString

public String toString()

Returns a string representation of the receiver including its class name (NSBundle or a subclass),
its name, its path, the names of its packages (as returned by bundleClassPackageNames), and the number
of classes it contains.

Notifications

BundleDidLoadNotification

public static String BundleDidLoadNotification

LoadedClassesNotification

public static final String LoadedClassesNotification

Description forthcoming.

41

C L A S S

NSCoder

Inherits from: Object

Package: com.webobjects.foundation

Class Description

NSCoder is an abstract class that declares the API used by concrete subclasses to transfer objects
and other data items between memory and some other format. This capability provides the basis
for archiving (where objects and data items are stored on disk) and distribution (where objects
and data items are copied between different processes or threads).

You should never need to subclass NSCoder. Rather, WebObjects provides private concrete
subclasses that it uses by default. However, you might interact with a coder object if you create
a class that implements the NSCoding interface.

NSCoder operates on scalars (booleans, bytes, and integers, for example), and any other types of
object. A coder object stores object type information along with an object’s data, so an object
decoded from a stream of bytes is normally of the same class as the object that was originally
encoded into the stream.

Encoding and Decoding Objects and Data Items
To encode or decode an object or data item, you must first create a coder object, then send it a
message defined by NSCoder or by a concrete subclass to actually encode or decode the item.
NSCoder itself defines no particular method for creating a coder; this typically varies with the
subclass.

42

C L A S S N S C o d e r

To encode an object or data item, use any of the encode... methods. To decode an object or data
item, simply use the decode... method corresponding to the original encode... method.
Matching these is important, as the method originally used determines the format of the
encoded data.

NSCoder’s interface is quite general. Concrete subclasses aren’t required to properly implement
all of NSCoder’s methods, and may explicitly restrict themselves to certain types of operations.

Managing Object Graphs
Objects frequently contain references to other objects, which may in turn contain references to
other objects. When analyzed, a group of objects may contain circular references or one object
may be referred to by several other objects. In these cases, the objects form an object graph and
require special handling to preserve the graph structure. NSCoder’s encodeObject method
preserves the graph structure.

Method Types

Encoding data

encodeBoolean

encodeByte

encodeBytes

encodeChar

encodeClass

encodeDouble

encodeFloat

encodeInt

encodeLong

encodeObject

encodeObjects

C L A S S N S C o d e r

43

encodeShort

Decoding data

decodeBoolean

decodeByte

decodeBytes

decodeChar

decodeClass

decodeDouble

decodeFloat

decodeInt

decodeLong

decodeObject

decodeObjects

decodeShort

All methods

finishCoding

prepareForReading

prepareForWriting

Constructors

NSCoder

public NSCoder()

The no-arg constructor. Don’t use this method; because NSCoder is an abstract class, you can
never create an instance of it.

44

C L A S S N S C o d e r

Instance Methods

decodeBoolean

public abstract boolean decodeBoolean()

Decodes and returns a boolean value that was previously encoded with encodeBoolean.

decodeByte

public abstract byte decodeByte()

Decodes and returns a byte value that was previously encoded with encodeByte.

decodeBytes

public abstract byte[] decodeBytes()

Decodes and returns an array of byte values that were previously encoded with encodeBytes.

decodeChar

public abstract char decodeChar()

Decodes and returns a char value that was previously encoded with encodeChar.

decodeClass

public abstract Class decodeClass()

Decodes and returns a class that was previously encoded with encodeClass.

C L A S S N S C o d e r

45

decodeDouble

public abstract double decodeDouble()

Decodes and returns a double value that was previously encoded with encodeDouble.

decodeFloat

public abstract float decodeFloat()

Decodes and returns a float value that was previously encoded with encodeFloat.

decodeInt

public abstract int decodeInt()

Decodes and returns an int value that was previously encoded with encodeInt.

decodeLong

public abstract long decodeLong()

Decodes and returns a long value that was previously encoded with encodeLong.

decodeObject

public abstract Object decodeObject()

Decodes and returns an object that was previously encoded with encodeObject.

decodeObjects

public abstract Object[] decodeObjects()

Decodes and returns an array of objects that were previously encoded with encodeObjects.

46

C L A S S N S C o d e r

decodeShort

public abstract short decodeShort()

Decodes and returns a short value that was previously encoded with encodeShort.

encodeBoolean

public abstract void encodeBoolean(boolean aBoolean)

Encodes aBoolean. To decode a value encoded with this method, use decodeBoolean.

encodeByte

public abstract void encodeByte(byte aByte)

Encodes aByte. To decode a value encoded with this method, use decodeByte.

encodeBytes

public abstract void encodeBytes(byte[] bytes[])

Encodes the bytes array. To decode a value encoded with this method, use decodeBytes.

encodeChar

public abstract void encodeChar(char aChar)

Encodes aChar. To decode a value encoded with this method, use decodeChar.

encodeClass

public abstract void encodeClass(Class aClass)

Encodes aClass. To decode a value encoded with this method, use decodeClass.

C L A S S N S C o d e r

47

encodeDouble

public abstract void encodeDouble(double aDouble)

Encodes aDouble. To decode a value encoded with this method, use decodeDouble.

encodeFloat

public abstract void encodeFloat(float aFloat)

Encodes aFloat. To decode a value encoded with this method, use decodeFloat.

encodeInt

public abstract void encodeInt(int anInt)

Encodes anInt. To decode a value encoded with this method, use decodeInt.

encodeLong

public abstract void encodeLong(long aLong)

Encodes aLong. To decode a value encoded with this method, use decodeLong.

encodeObject

public abstract void encodeObject(Object anObject)

Encodes anObject. To decode a value encoded with this method, use decodeObject.

encodeObjects

public abstract void encodeObjects(Object[] anObject[])

Encodes the objects array. To decode a value encoded with this method, use decodeObjects.

48

C L A S S N S C o d e r

encodeShort

public abstract void encodeShort(short aShort)

Encodes aShort. To decode a value encoded with this method, use decodeShort.

finishCoding

public void finishCoding()

Cleans up the receiver’s state after the receiver has finished encoding data. NSCoder’s
implementation does nothing.

prepareForReading

public void prepareForReading(java.io.InputStream inputStream)

Prepares the receiver for reading data from inputStream. NSCoder’s implementation does
nothing.

prepareForWriting

public void prepareForWriting(java.io.OutputStream outputStream)

Prepares the receiver for writing to outputStream. NSCoder’s implementation does nothing.

49

C L A S S

NSCoding.Support

Inherits from: Object

Package: com.webobjects.foundation

Class Description

NSCoding.Support is an abstract class that defines a mechanism for one class to provide
NSCoding behavior on behalf of another class. Subclasses of NSCoding.Support encode and
decode objects of a different class. Subclasses of NSCoding.Support are needed to provide
coding for classes whose code you don’t own and that don’t implement NSCoding.

For example, consider Java Client WebObjects applications that use NSCoding to distribute
objects between client and server. Not all objects that Java Client distributes implement
NSCoding (java.lang.String, for example). To encode and decode non-NSCoding objects, Java
Client uses specialized subclasses of NSCoding.Support.

A subclass of NSCoding.Support should implement the methods encodeWithCoder and decodeObject
to encode and decode objects of a specific non-NSCoding class. NSCoding.Support’s
implementations of these methods do nothing.

Note: Java Client has private subclasses of NSCoding.Support to encode and decode objects
basic Java value classes such as java.lang.String, java.lang.Number, java.math.BigDecimal,
and java.util.Date.

50

C L A S S N S C o d i n g . S u p p o r t

NSCoding.Support manages a registry of Support classes for classes that don’t implement
NSCoding. Use the methods setSupportForClass and supportForClass to register and access the
NSCoding.Support classes for performing coding on non-NSCoding objects.

Constructors

NSCoding.Support

public NSCoding.Support()

The no-arg constructor. Don’t use this method; because NSCoding.Support is an abstract class,
you can never create an instance of it.

Static Methods

setSupportForClass

public static void setSupportForClass(
NSCoding.Support supportClass,
Class aClass)

Sets supportClass as the support class to use for coding instances of aClass.

supportForClass

public static NSCoding.Support supportForClass(Class aClass)

Returns the support class used for coding instances of aClass.

C L A S S N S C o d i n g . S u p p o r t

51

Instance Methods

classForCoder

public Class classForCoder(Object anObject)

Returns the class a coder should record as the class for anObject when anObject is encoded.
NSCoding.Support’s implementation simply returns anObject’s actual class.

See Also: classForCoder (NSCoding)

decodeObject

public abstract Object decodeObject(NSCoder aCoder)

Implemented by subclasses to decode an object of a specific type from the data in aCoder.

See Also: The NSCoding class description

encodeWithCoder

public abstract void encodeWithCoder(
Object anObject,
NSCoder aCoder)

Implemented by subclasses to encode an object of a specific type into aCoder.

See Also: encodeWithCoder (NSCoding)

52

C L A S S N S C o d i n g . S u p p o r t

53

C L A S S

NSComparator

Inherits from: Object

Package: com.webobjects.foundation

Class Description

NSComparator is an abstract class that defines an API for comparing two objects for the purpose
of sorting them. The class defines one method, compare, which compares two parameters and
returns one of OrderedAscending, OrderedSame, or OrderedDescending.

Instead of invoking compare directly on a comparator, you typically use the NSArray method
sortedArrayUsingComparator, which sorts the elements of the receiving array into a new array, or the
NSMutableArray method sortUsingComparator, which sorts the elements of an array in place.
NSComparator provides default comparators to use with these sorting methods. See the section
“Constants” (page 54).

54

C L A S S N S C o m p a r a t o r

Constants

NSComparator defines the following int constants as the possible return values for compare:

Additionally, NSComparator defines the following NSComparator constants to be used for
comparing objects of the specified class:

Constant Description

OrderedAscending Returned when the object arguments are in ascending order (the value of
the first argument is less than the value of the second).

OrderedSame Returned when the values of the object arguments are equal.

OrderedDescending Returned when the object arguments are in descending order (the value of
the first argument is less than the value of the second).

Constant Compares Objects of Class

AscendingStringComparator String

DescendingStringComparator String

AscendingCaseInsensitiveStringComparator String

DescendingCaseInsensitiveStringComparator String

AscendingNumberComparator Number

DescendingNumberComparator Number

AscendingTimestampComparator NSTimestamp

DescendingTimestampComparator NSTimestamp

C L A S S N S C o m p a r a t o r

55

Constructors

NSComparator

public NSComparator()

The no-arg constructor. Don’t use this method; because NSComparator is an abstract class, you
can never create an instance of it.

Instance Methods

compare

public abstract int compare(
Object first,
Object second) throws NSComparator.ComparisonException

Compares the values of first and second and returns the result, one of OrderedAscending, OrderedSame,
or OrderedDescending. Specifically, for non-null x, y, and z:

■ compare(x, x) returns OrderedSame.

■ If compare(x, y) returns OrderedSame, then compare(y, x) returns OrderedSame

■ If compare(x, y) returns OrderedAscending, then compare(y, x) returns OrderedDescending.

■ If compare(x, y) returns OrderedDescending, then compare(y, x) returns OrderedAscending.

■ If compare(x, y) returns OrderedAscending and compare(y, z) returns OrderedAscending, then compare(x,
z) returns OrderedAscending.

■ Exactly one of the following is true: compare(x, x) == OrderedSame, compare(x, x) == OrderedAscending,
or compare(x, x) == OrderedDescending.

■ The result of compare(x, y) must be the same in all invocations.

Throws an NSComparator.ComparisonException if a comparison between first and second is
impossible or undefined; for example, if either argument is null.

56

C L A S S N S C o m p a r a t o r

57

C L A S S

NSComparator.ComparisonException

Inherits from: Exception : Throwable : Object

Package: com.webobjects.foundation

Class Description

Instances of the NSComparator.ComparisonException class are created and thrown when an
error condition is encountered during the comparison of two objects. For more information, see
the NSComparator class specification.

Constructors

NSComparator.ComparisonException

public NSComparator.ComparisonException(String message)

Creates and returns a new Exception with message as the message.

58

C L A S S N S C o m p a r a t o r . C o m p a r i s o n E x c e p t i o n

59

C L A S S

NSData

Inherits from: Object

Implements: Cloneable
java.io.Serializable
NSCoding

Package: com.webobjects.foundation

Class Description

NSData and its subclass NSMutableData provide data objects, object-oriented wrappers for byte
buffers. Data objects let byte arrays take on the behavior of Foundation objects. NSData creates
static data objects, and NSMutableData creates dynamic data objects.

Data objects can wrap data of any size. The object contains no information about the data itself
(such as its type); the responsibility for deciding how to use the data lies with the client. In
particular, it will not handle byte-order swapping when distributed between big-endian and
little-endian machines.

60

C L A S S N S D a t a

Table 0-5 describes the NSData methods that provide the basis for all NSData’s other methods;
that is, all other methods are implemented in terms of these four. If you create a subclass of
NSData, you need only ensure that these base methods work properly. Having done so, you can
be sure that all your subclass's inherited methods operate properly.

To extract a data object that contains a subset of the bytes in another data object, use the
subdataWithRange method. To determine if two data objects are equal, use the isEqualToData method,
which does a byte-for-byte comparison.

The writeToStream method lets you write the contents of a data object to a stream (a
java.io.OutputStream object).

Constants

NSData defines the following constant:

Table 0-5 NSData’s Base API

Method Description

bytesNoCopy Returns the internal byte array that contains the receiver’s
data. Used by mutable subclasses of NSData.

immutableBytes Returns an immutable byte array that contains the receiver’s
data.

immutableRange Returns an immutable NSRange object that specifies the
receiver’s length.

rangeNoCopy Returns the internal NSRange object that specifies the
receiver’s length. Used by mutable subclasses of NSData.

Constant Type Description

EmptyData NSData An empty data object, which can be shared to save memory.

C L A S S N S D a t a

61

Interfaces Implemented

Cloneable

clone

java.io.Serializable

NSCoding

classForCoder

decodeObject

encodeWithCoder

Method Types

Constructors

NSData

Accessing data

bytes

bytesNoCopy

immutableBytes

subdataWithRange

Testing data

immutableRange

length

rangeNoCopy

62

C L A S S N S D a t a

isEqualToData

Storing data

stream

writeToStream

Methods inherited from Object

equals

hashCode

toString

Deprecated methods

dataWithContentsOfFile

dataWithContentsOfMappedFile

writeToFile

writeToURL

Constructors

NSData

public NSData()

Creates an empty data object.

public NSData(NSData data)

Creates a data object containing the contents of another data object, data.

public NSData(String string)

Deprecated in the Java Foundation Framework. Don’t use this constructor. Use
NSData(string.getBytes()) instead.

C L A S S N S D a t a

63

public NSData(byte[] bytes)

Creates a data object with all the data in the byte array bytes.

public NSData(
byte[] bytes,
int offset,
int count)

Creates a data object with the bytes from the language array bytes that fall in the range specified
by offset and count.

public NSData(
byte[] bytes,
NSRange range)

Creates a data object with the bytes from the language array bytes that fall in the range specified
by range.

public NSData(
byte[] bytes,
NSRange range,
boolean noCopy)

Creates a data object with the bytes from the language array bytes that are fall in the range
specified by range. The noCopy parameter specifies whether or not a copy of bytes is made.

public NSData(java.io.File file) throws java.io.IOException

Deprecated in the Java Foundation Framework. Don’t use this constructor. Use NSData(new
FileInputStream(file),chunkSize) instead.

public NSData(
java.io.InputStream inputStream,
int chunkSize) throws java.io.IOException

Creates a data object with the data from the stream specified by inputStream. The chunkSize
parameter specifies the size, in bytes, of the block that the input stream returns when it reads.
For maximum performance, you should set the chunk size to the approximate size of the data.
This constructor reads the stream until it detects an end of file or encounters an exception, but it
does not close the stream.

64

C L A S S N S D a t a

public NSData(java.net.URL url) throws java.io.IOException

Deprecated in the Java Foundation Framework. Don’t use this constructor. Use the following
code instead:

URLConnection connection = url.openConnection();
connection.connect();
NSData myData = new NSData(connection.getInputStream(),chunkSize);

Static Methods

dataWithContentsOfFile

public static NSData dataWithContentsOfFile(java.io.File file)
throws java.io.IOException

Deprecated in the Java Foundation Framework. Don’t use this method. Use the following code
instead:

myData = new NSData(new FileInputStream(file), chunkSize);

public static NSData dataWithContentsOfFile(String path)
throws java.io.IOException

Deprecated in the Java Foundation Framework. Don’t use this method. Use the following code
instead:

myData = new NSData(new FileInputStream(path), chunkSize);

dataWithContentsOfMappedFile

public static NSData dataWithContentsOfMappedFile(java.io.File file) throws java.io.IOException

Deprecated in the Java Foundation Framework. Don’t use this method. Use the following code
instead:

myData = new NSData(new FileInputStream(file), chunkSize);

C L A S S N S D a t a

65

decodeObject

public static Object decodeObject(NSCoder coder)

Creates an NSData from the data in coder.

See Also: NSCoding

Instance Methods

bytes

public byte[] bytes(
int offset,
int count)

Returns a byte array containing the receiver’s contents that fall within the range specified by
offset and count.

public byte[] bytes(NSRange range)

Returns a byte array containing the receiver’s contents that fall within the range specified by
range.

public byte[] bytes()

Returns a byte array containing all of the receiver’s contents.

bytesNoCopy

protected byte[] bytesNoCopy()

Returns the internal byte array that contains the receiver’s data. Due to the internal
implementation of NSData, this array may contain bytes that are not actually a part of the
receiver’s data. The receiver’s actual data is composed of the returned array’s bytes that lie in the
range returned by rangeNoCopy. Used by mutable subclasses of NSData.

66

C L A S S N S D a t a

public byte[] bytesNoCopy(NSMutableRange dataRange)

Returns the internal byte array that contains the receiver’s data and sets dataRange’s offset and
length to those of the receiver’s internal NSRange object. The receiver’s actual data is composed
of the returned array’s bytes that lie within dataRange.

WARNING NSData assumes the internal byte array is immutable. You
should not change the contents of this array.

classForCoder

public Class classForCoder()

Conformance to NSCoding. See the method description of classForCoder in the interface
specification for NSCoding.

clone

public Object clone()

Simply returns the receiver. Since NSData objects are immutable, there’s no need to make an
actual clone.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding. See the method description of encodeWithCoder in the interface
specification for NSCoding.

equals

public boolean equals(Object anObject)

Compares the receiving data object to anObject. If anObject is an NSData and the contents of anObject
are equal to the contents of the receiver, this method returns true. If not, it returns false. Two data
objects are equal if they hold the same number of bytes, and if the bytes at the same position in
the objects are the same.

C L A S S N S D a t a

67

hashCode

public int hashCode()

Provide an appropriate hash code useful for storing the receiver in a hash-based data structure.

immutableBytes

protected byte[] immutableBytes()

Returns an immutable byte array that contains the receiver’s data.

immutableRange

protected NSRange immutableRange()

Returns an immutable NSRange object that specifies the receiver’s length.

isEqualToData

public boolean isEqualToData(NSData otherData)

Compares the receiving data object to otherData. If the contents of otherData are equal to the
contents of the receiver, this method returns true. If not, it returns false. Two data objects are
equal if they hold the same number of bytes, and if the bytes at the same position in the objects
are the same.

length

public int length()

Returns the number of bytes contained by the receiver.

68

C L A S S N S D a t a

rangeNoCopy

protected NSRange rangeNoCopy()

Returns the internal NSRange object that specifies the offset and length of the receiver’s data
relative to the internal byte array (as returned by bytesNoCopy). Used by mutable subclasses of
NSData.

stream

public java.io.ByteArrayInputStream stream()

Creates and returns a java.io.ByteArrayInputStream containing the receiver’s data.

subdataWithRange

public NSData subdataWithRange(NSRange range)

Returns a data object containing a copy of the receiver’s bytes that are fall within the range
specified by range. If range isn’t within the receiver’s range of bytes, a RangeException is thrown.

toString

public String toString()

Returns a string representation of the receiver that contains its length, its location, and some of
its data.

writeToFile

public boolean writeToFile(String path)

Deprecated in the Java Foundation Framework. Don’t use this method. Use the following code
instead:

try {
FileOutputStream fileOutputStream = new FileOutputStream(path);
myData.writeToStream(fileOutputStream);
fileOutputStream.close();

} catch (IOException exception) {

C L A S S N S D a t a

69

/* Do something with the exception */
}

writeToStream

public void writeToStream(java.io.OutputStream outputStream)
throws java.io.IOException

Writes the bytes in the receiver contents to the outputStream. If the write fails for any reason,
throws a java.io.IOException.

See Also: writeToStream

writeToURL

public boolean writeToURL(
java.net.URL url,
boolean atomically)

Deprecated in the Java Foundation Framework. Don’t use this method. Use the following code
instead:

try {
FileOutputStream fileOutputStream = new FileOutputStream(url.getFile());
myData.writeToStream(fileOutputStream);
fileOutputStream.close();

} catch (IOException exception) {
/* Do something with the exception */

}

See Also: writeToStream

70

C L A S S N S D a t a

71

C L A S S

NSDelayedCallbackCenter

Inherits from: Object

Package: com.webobjects.foundation

Class Description

An NSDelayedCallbackCenter object (also called a delayed callback center) provides a way to
guarantee that particular methods are invoked after an event has ended. You can register
selectors with the delayed callback center. The center, in turn, invokes them when the event
ends. In WebObjects, this happens at then end of the current WebObjects request-response cycle.

When you register a selector, you also specify a priority, which determines the order in which it
is invoked relative to the other selectors. The selectors are invoked in order of ascending priority.
To register a selector with the delayed callback center, use performSelector. To cancel it before the
event ends, use cancelPerformSelector.

The event loop invokes eventEnded to indicate that the current event has ended. The eventEnded
method invokes the queued selectors.

Each task has a default delayed callback center that you access with the defaultCenter static
method.

72

C L A S S N S D e l a y e d C a l l b a c k C e n t e r

Method Types

Accessing the default center

defaultCenter

Managing selectors

cancelPerformSelector

performSelector

Indicating the end of an event

eventEnded

Static Methods

defaultCenter

public static NSDelayedCallbackCenter defaultCenter()

Returns the current task’s delayed callback center.

C L A S S N S D e l a y e d C a l l b a c k C e n t e r

73

Instance Methods

cancelPerformSelector

public void cancelPerformSelector(
NSSelector selector,
Object target,
Object argument)

Removes the specified selector with the specified target object and argument from the list of
registered selectors.

eventEnded

public void eventEnded()

Invokes the registered selectors in order of ascending priority. The event loop should invoke this
method when the current event ends.

performSelector

public void performSelector(
NSSelector selector,
Object target,
Object argument,
int priority)

Registers selector to be invoked on target with the specified argument and priority. When the
current event ends, the registered selectors are invoked in order of ascending priority.

74

C L A S S N S D e l a y e d C a l l b a c k C e n t e r

75

C L A S S

NSDictionary

Inherits from: Object

Implements: Cloneable
java.io.Serializable
NSCoding
NSKeyValueCoding
NSKeyValueCodingAdditions

Package: com.webobjects.foundation

Class Description

The NSDictionary class declares the programmatic interface to objects that manage immutable
associations of keys and values. Use this class, or its subclass NSMutableDictionary when you
need a convenient and efficient way to retrieve data associated with an arbitrary key. (For
convenience, we use the term dictionary to refer to any instance of one of these classes without
specifying its exact class membership.)

A key-value pair within a dictionary is called an entry. Each entry consists of one object that
represents the key, and a second object which is that key’s value. Within a dictionary, the keys
are unique. That is, no two keys in a single dictionary are equal (as determined by equals).

An instance of NSDictionary is an immutable dictionary: you establish its entries when it’s
created, and cannot modify them afterwards. An instance of NSMutableDictionary is a mutable
dictionary: you can add or delete entries at any time, and the object automatically allocates
memory as needed.

76

C L A S S N S D i c t i o n a r y

Internally, a dictionary uses a hash table to organize its storage and to provide rapid access to a
value given the corresponding key. However, the methods defined in this class insulate you
from the complexities of working with hash tables, hashing functions, or the hashed value of
keys. The methods described below take keys directly, not their hashed form.

Methods that add entries to dictionaries—whether during construction (for all dictionaries) or
modification (for mutable dictionaries)—add each value object to the dictionary directly. These
methods also add each key object directly to the dictionary, which means that you must ensure
that the keys do not change. If you expect your keys to change for any reason, you should make
copies of the keys and add the copies to the dictionary.

Table 0-6 describes the NSDictionary methods that provide the basis for all NSDictionary’s other
methods; that is, all other methods are implemented in terms of these four. If you create a
subclass of NSDictionary, you need only ensure that these base methods work properly. Having
done so, you can be sure that all your subclass's inherited methods operate properly.

The other methods declared here operate by invoking one or more of these primitives. The
non-primitive methods provide convenient ways of accessing multiple entries at once.

Table 0-6 NSDictionary’s Base API

Method Description

count Returns the number of entries in the dictionary.

objectForKey Returns the value associated with a given key.

keysNoCopy Returns a natural language array containing the keys in the
dictionary.

objectsNoCopy Returns a natural language array containing the objects in the
dictionary.

C L A S S N S D i c t i o n a r y

77

Constants

NSDictionary provides the following constant as a convenience; you can use it when you need
an empty dictionary.

Constant Type Description

EmptyDictionary NSDictionary A shared NSDictionary instance containing no
entries.

78

C L A S S N S D i c t i o n a r y

Interfaces Implemented

Cloneable

java.io.Serializable

NSCoding

classForCoder

decodeObject

encodeWithCoder

NSKeyValueCoding

takeValueForKey

valueForKey

NSKeyValueCodingAdditions

takeValueForKeyPath

valueForKeyPath

Method Types

Constructors

NSDictionary

Accessing keys and values

allKeys

allKeysForObject

allValues

C L A S S N S D i c t i o n a r y

79

isEqualToDictionary

keyEnumerator

keysNoCopy

objectEnumerator

objectForKey

objectsForKeys

objectsNoCopy

Counting entries

count

Creating hash tables

hashtable

Copying dictionaries

immutableClone

mutableClone

Methods inherited from Object

clone

equals

hashCode

toString

Constructors

NSDictionary

public NSDictionary()

Creates an empty dictionary. To improve performance, use the EmptyDictionary shared instance
instead. See Constants.

80

C L A S S N S D i c t i o n a r y

public NSDictionary(
NSArray objectArray,
NSArray keyArray)

Creates a NSDictionary with entries from the contents of the keyArray and objectArray
NSArrays. This method steps through objectArray and keyArray, creating entries in the new
dictionary as it goes. Each key object and its corresponding value object is added directly to the
dictionary. An InvalidArgumentException is thrown if the objectArray and keyArray do not
have the same number of elements.

public NSDictionary(NSDictionary dictionary)

Creates a dictionary containing the keys and values found in dictionary.

public NSDictionary(
Object object,
Object key)

Creates a dictionary containing a single object object for a single key key.

public NSDictionary(
Object[] objects[],
Object[] keys[])

Creates a NSDictionary with entries from the contents of the keys and objects arrays. This
method steps through objects and keys, creating entries in the new dictionary as it goes. Each
key object and its corresponding value object is added directly to the dictionary. An
InvalidArgumentException is thrown if the objects and keys do not have the same number of
elements.

Note: NSDictionary assumes that key objects are immutable. If your key objects are mutable,
you should make copies of them and add the copies to the dictionary.

Note: NSDictionary assumes that key objects are immutable. If your key objects are mutable,
you should make copies of them and add the copies to the dictionary.

Note: NSDictionary assumes that key objects are immutable. If your key objects are mutable,
you should make copies of them and add the copies to the dictionary.

C L A S S N S D i c t i o n a r y

81

public NSDictionary(
java.util.Dictionary dictionary,
boolean ignoreNull)

Creates a dictionary containing the keys and values found in dictionary. If ignoreNull is false,
throws an InvalidArgumentException if any key or value in dictionary is null.

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Creates an NSDictionary from the data in coder.

See Also: NSCoding

Instance Methods

allKeys

public NSArray allKeys()

Returns a new array containing the dictionary’s keys or an empty array if the dictionary has no
entries. The order of the elements in the array isn’t defined.

See Also: allValues, allKeysForObject

82

C L A S S N S D i c t i o n a r y

allKeysForObject

public NSArray allKeysForObject(Object anObject)

Finds all occurrences of the value anObject in the dictionary and returns a new array with the
corresponding keys. Each object in the dictionary is sent an equals message to determine if it’s
equal to anObject. If no object matching anObject is found, this method returns null.

See Also: allKeys, keyEnumerator

allValues

public NSArray allValues()

Returns a new array containing the dictionary’s values, or an empty array if the dictionary has
no entries. The order of the values in the array isn’t defined.

See Also: allKeys, objectEnumerator

classForCoder

public Class classForCoder()

Conformance to NSCoding. See the method description of classForCoder in the interface
specification for NSCoding.

clone

public Object clone()

Returns a copy (an NSDictionary object) of the receiver. Since NSDictionaries are immutable,
there’s no need to make an actual copy.

count

public int count()

Returns the number of entries in the dictionary.

C L A S S N S D i c t i o n a r y

83

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding. See the method description of encodeWithCoder in the interface
specification for NSCoding.

equals

public boolean equals(Object anObject)

Compares the receiving dictionary to anObject. If anObject is an NSDictionary and the contents
of anObject are equal to the contents of the receiver, this method returns true. If not, it returns
false.

Two dictionaries have equal contents if they each hold the same number of entries and, for a
given key, the corresponding value objects in each dictionary satisfy the equals test.

hashCode

public int hashCode()

Provide an appropriate hash code useful for storing the receiver in a hash-based data structure.

hashtable

public java.util.Hashtable hashtable()

Returns a java.util.Hashtable containing the receiver’s entries.

immutableClone

public NSDictionary immutableClone()

Returns an immutable copy (an NSDictionary) of the receiver. Since NSDictionaries are
immutable, there’s no need to make an actual copy.

84

C L A S S N S D i c t i o n a r y

isEqualToDictionary

public boolean isEqualToDictionary(NSDictionary otherDictionary)

Compares the receiving dictionary to otherDictionary. If the contents of otherDictionary are
equal to the contents of the receiver, this method returns true. If not, it returns false.

Two dictionaries have equal contents if they each hold the same number of entries and, for a
given key, the corresponding value objects in each dictionary satisfy the equals test.

keyEnumerator

public java.util.Enumeration keyEnumerator()

Returns an Enumeration object that lets you access each key in the dictionary.

java.util.Enumeration enumerator = myDict.keyEnumerator();

while (enumerator.hasMoreElements()) {{
Object anObject = enumerator.nextElement();
/* code to act on each element */

}

When this method is used with mutable subclasses of NSDictionary, your code shouldn’t
modify the entries during enumeration. If you intend to modify the entries, use the allKeys
method to create a “snapshot” of the dictionary’s keys. Then use this snapshot to traverse the
entries, modifying them along the way.

Note that the objectEnumerator method provides a convenient way to access each value in the
dictionary.

See Also: allKeys, allKeysForObject, objectEnumerator

keysNoCopy

protected Object[] keysNoCopy()

Returns an array containing the dictionary’s values, or an empty array if the dictionary has no
entries. The order of the values in the array isn’t defined. This method is similar to allKeys except
the keys are not copied.

See Also: objectsNoCopy

C L A S S N S D i c t i o n a r y

85

mutableClone

public NSMutableDictionary mutableClone()

Returns a mutable dictionary (an NSMutableDictionary) with the same keys and value objects
as the receiver.

objectEnumerator

public java.util.Enumeration objectEnumerator()

Returns an enumerator object that lets you access each value in the dictionary.

java.util.Enumeration enumerator = myDict.objectEnumerator();

while (enumerator.hasMoreElements()) {{
Object anObject = enumerator.nextElement();
/* code to act on each element */

}

When this method is used with mutable subclasses of NSDictionary, your code shouldn’t
modify the entries during enumeration. If you intend to modify the entries, use the allValues
method to create a “snapshot” of the dictionary’s values. Work from this snapshot to modify the
values.

See Also: keyEnumerator

objectForKey

public Object objectForKey(Object aKey)

Returns an entry’s value given its key, or null if no value is associated with aKey.

See Also: allKeys, allValues

86

C L A S S N S D i c t i o n a r y

objectsForKeys

public NSArray objectsForKeys(
NSArray keys,
Object anObject)

Returns the set of objects from the receiver that correspond to the specified keys as an NSArray.
The objects in the returned array and the keys array have a one-for-one correspondence, so that
the nth object in the returned array corresponds to the nth key in keys. If an object isn’t found in
the receiver to correspond to a given key, the marker object, specified by anObject, is placed in
the corresponding element of the returned array.

objectsNoCopy

protected Object[] objectsNoCopy()

Returns an array containing the dictionary’s values, or an empty array if the dictionary has no
entries. The order of the values in the array isn’t defined. This method is similar to allValues
except the objects are not copied.

See Also: keysNoCopy

takeValueForKey

public void takeValueForKey(
Object object,
String key)

Conformance to NSKeyValueCoding. Since NSDictionaries are immutable, this method simply
throws an IllegalStateException.

takeValueForKeyPath

public void takeValueForKeyPath(
Object object,
String key)

Conformance to NSKeyValueCodingAdditions. See the method specification of
takeValueForKeyPath in the interface specification for NSKeyValueCodingAdditions.

C L A S S N S D i c t i o n a r y

87

toString

public String toString()

Returns a string representation of the receiver containing a string representation of each
key-value pair.

valueForKey

public Object valueForKey(String key)

Conformance to NSKeyValueCoding. Equivalent to objectForKey.

valueForKeyPath

public Object valueForKeyPath(String key)

Conformance to NSKeyValueCodingAdditions. If the key exists in the dictionary, this method
returns the corresponding object in the dictionary by invoking objectForKey. Otherwise it invokes
the default implementation of valueForKeyPath. See the method specification of valueForKeyPath in the
interface specification for NSKeyValueCodingAdditions.

88

C L A S S N S D i c t i o n a r y

89

C L A S S

NSDisposableRegistry

Inherits from: Object

Implements: NSDisposable
Serializable

Package: com.webobjects.foundation

Class Description

An NSDisposableRegistry object is a registry of NSDisposable objects that should be disposed
when the registry is disposed. You can add objects to a registry with addObject and
addObjectsFromRegistry, remove objects with removeObject, and dispose of a registries objects with
dispose.

There are two ways in which you might interact with a disposable registry: adding objects to
another object’s registry and creating a class whose instances manage their own disposable
registries. As an example of the former, consider the EOController class (defined in the
eoapplication package and used in Direct to Java Client applications). EOController has a
disposable registry, which you can access with the EOController method disposableRegistry. In
EOController’s dispose method, it disposes its disposable registry, which in turn disposes all its
objects. You can get a controller’s registry and add objects to it; they will be disposed along with
the EOController. The second way in which you might interact with a disposable registry, then,
is to create a class similar to EOController that uses a disposable registry to group objects that
should be disposed of along with instances of your class.

90

C L A S S N S D i s p o s a b l e R e g i s t r y

Constructors

NSDisposableRegistry

public NSDisposableRegistry()

Creates an empty disposable registry.

Instance Methods

addObject

public void addObject(NSDisposable anObject)

Adds anObject to the receiver so that anObject will be disposed when the receiver is disposed.

addObjectsFromRegistry

public void addObjectsFromRegistry(NSDisposableRegistry aDisposableRegistry)

Adds the objects in aDisposableRegistry to the receiver, so that aDisposableRegistry’s objects will be
disposed when the receiver is disposed.

dispose

public void dispose()

Conformance to NSDisposable. NSDisposableRegistry’s implementation simply sends dispose to
all its objects.

See Also: dispose (NSDisposable)

C L A S S N S D i s p o s a b l e R e g i s t r y

91

removeObject

public void removeObject(NSDisposable anObject)

Removes anObject from the receiver.

toString

public String toString()

Returns a string representation of the receiver.

92

C L A S S N S D i s p o s a b l e R e g i s t r y

93

C L A S S

NSForwardException

Inherits from: RuntimeException : Exception : Throwable : Object

Package: com.webobjects.foundation

Class Description

NSForwardException objects (or forward exceptions) are wrappers for Throwable objects that
are not RuntimeExceptions. Since NSForwardException is a subclass of RuntimeException,
forward exceptions can be omitted from the throws clause of a method even if the original
exception had to be declared.

NSForwardException is used internally within WebObjects to keep the API congruent with the
WebObjects 4.5 API (which uses the Java Bridge). Apple doesn’t anticipate the need for you to
create NSForwardException objects. You may need to catch them, however. To access the
original exception, use the originalException method.

Method Types

Constructors

NSForwardException

94

C L A S S N S F o r w a r d E x c e p t i o n

Accessing the wrapped exception

originalException

Methods inherited from Throwable

printStackTrace

stackTrace

toString

Constructors

NSForwardException

public NSForwardException(Throwable exception)

public NSForwardException(
Throwable exception,
String extraMessage)

Creates an NSForwardException from exception. If exception is already an
NSForwardException, the constructor wraps the exception’s originalException.

The two-argument constructor allows you to specify an extra message; in this case, the new
NSForwardException’s message is exception’s message with extraMessage appended. See the
Throwable class specification in Sun’s documentation for more information about an exception’s
messages.

Instance Methods

originalException

public Throwable originalException()

Returns the exception wrapped by the receiver.

C L A S S N S F o r w a r d E x c e p t i o n

95

printStackTrace

public void printStackTrace()

Prints the wrapped exception and its stack trace to the standard error stream. See the class
specification for java.lang.Throwable in Sun’s Java documentation for more information about
the stack trace format.

public void printStackTrace(java.io.PrintStream printStream)

Prints the wrapped exception and its stack trace to the specified print stream.

public void printStackTrace(java.io.PrintWriter printWriter)

Prints the wrapped exception and its stack trace to the specified print writer.

stackTrace

public String stackTrace()

Returns a string containing the wrapped exception and its stack trace.

toString

public String toString()

Returns a string representation of the receiver indicating the receiver’s class, its wrapped
exception’s class, and the wrapped exception’s error message string.

96

C L A S S N S F o r w a r d E x c e p t i o n

97

C L A S S

NSKeyValueCoding.
DefaultImplementation

Inherits from: Object

Package: com.webobjects.foundation

Class Description

The NSKeyValueCoding. DefaultImplementation class provides default implementations of the
NSKeyValueCoding and NSKeyValueCoding.ErrorHandling interfaces. For more information,
see the NSKeyValueCoding and NSKeyValueCoding.ErrorHandling interface specifications.

Static Methods

handleQueryWithUnboundKey

public static Object handleQueryWithUnboundKey(
Object anObject,
String key)

Throws an NSKeyValueCoding. UnknownKeyException with anObject as the exception’s object
and key as the exception’s key. Invoked from valueForKey when it finds no property binding for key.

See Also: NSKeyValueCoding.ErrorHandling

98

C L A S S N S K e y Va l u e C o d i n g . D e f a u l t I m p l e m e n t a t i o n

handleTakeValueForUnboundKey

public static void handleTakeValueForUnboundKey(
Object anObject,
Object value,
String key)

Throws an NSKeyValueCoding. UnknownKeyException with anObject as the exception’s object
and key as the exception’s key. Invoked from takeValueForKey when it finds no property binding for
key.

See Also: NSKeyValueCoding.ErrorHandling

takeValueForKey

public static void takeValueForKey(
Object anObject,
Object value,
String key)

Sets anObject’s property identified by key to value, or invokes handleTakeValueForUnboundKey.

See Also: takeValueForKey (NSKeyValueCoding)

unableToSetNullForKey

public static void unableToSetNullForKey(
Object anObject,
String key)

Throws an IllegalArgumentException. Invoked from takeValueForKey when it’s given a null value
for a scalar property (such as an int or a float).

See Also: NSKeyValueCoding.ErrorHandling

C L A S S N S K e y Va l u e C o d i n g . D e f a u l t I m p l e m e n t a t i o n

99

valueForKey

public static Object valueForKey(
Object anObject,
String key)

Returns anObject’s value for the property identified by key, or invokes handleQueryWithUnboundKey.

See Also: valueForKey (NSKeyValueCoding)

100

C L A S S N S K e y Va l u e C o d i n g . D e f a u l t I m p l e m e n t a t i o n

101

C L A S S

NSKeyValueCoding.Null

Inherits from: Object

Implements: Serializable
Cloneable
NSCoding

Package: com.webobjects.foundation

Class Description

NSKeyValueCoding.Null is a final class that defines a unique object used to represent null values
in collection objects, such as NSArrays, which don’t allow null values.

For instance, Enterprise Objects Framework uses NSKeyValueCoding.Null to represent null
values from database rows in its database level snapshots (NSDictionary objects). However,
Enterprise Objects Framework automatically translates NSKeyValueCoding.Null to null in
enterprise objects, so you should rarely need to write code that accounts for this class.

Whenever null is represented by NSKeyValueCoding.Null, it should be represented with the
instance stored in the NSKeyValueCoding constant, NullValue. You can safely use this instance
with the == operator to test for the presence of a null value:

if (value == NSKeyValueCoding.NullValue) {
/* ... */

}

102

C L A S S N S K e y Va l u e C o d i n g . N u l l

Interfaces Implemented

NSCoding

classForCoder

encodeWithCoder

Cloneable

clone

Static Methods

decodeObject

public static Object decodeObject(NSCoder aNSCoder)

Returns the shared instance of NSKeyValueCoding.Null stored in the NSKeyValueCoding
constant NullValue.

See Also: NSCoding Interface Description

Instance Methods

classForCoder

public Class classForCoder()

Conformance to NSCoding. See the method description for classForCoder in the NSCoding
interface specification.

C L A S S N S K e y Va l u e C o d i n g . N u l l

103

clone

public Object clone()

Simply returns the shared instance of NSKeyValueCoding.Null stored in the constant NullValue.

encodeWithCoder

public void encodeWithCoder(NSCoder aNSCoder)

Conformance to NSCoding. See the method description for encodeWithCoder in the NSCoding
interface specification.

toString

public String toString()

Returns a string representation of the receiver.

104

C L A S S N S K e y Va l u e C o d i n g . N u l l

105

C L A S S

NSKeyValueCoding.
UnknownKeyException

Inherits from: RuntimeException

Package: com.webobjects.foundation

Class Description

Instances of the NSKeyValueCoding. UnknownKeyException class are created and thrown
when an unknown key is encountered during key-value coding.

For example, suppose an Employee object receives a valueForKey message with “partNumber” as
the key. The Employee class doesn’t declare a method or instance variable for “partNumber”, so
valueForKey throws an UnknownKeyException. An NSKeyValueCoding. UnknownKeyException
has a userInfo dictionary containing entries for the object for which key-value coding failed
(TargetObjectUserInfoKey) and the unknown key (UnknownUserInfoKey). For the Employee/partNumber
example, the TargetObjectUserInfoKey entry would contain the Employee object and the
UnknownUserInfoKey would contain the string “partNumber”.

For more information on key-value coding and error conditions, see the NSKeyValueCoding
and NSKeyValueCoding.ErrorHandling interface specifications.

106

C L A S S N S K e y Va l u e C o d i n g . U n k n o w n K e y E x c e p t i o n

Constants

NSKeyValueCoding. UnknownKeyException defines the following constants:

Constructors

NSKeyValueCoding.UnknownKeyException

public NSKeyValueCoding.UnknownKeyException(
String message,
Object anObject,
String key)

Creates and returns a new UnknownKeyException with message as the message and a userInfo
dictionary specifying anObject for the TargetObjectUserInfoKey and key for the UnknownUserInfoKey.

public NSKeyValueCoding.UnknownKeyException(
String message,
NSDictionary userInfo)

Deprecated in the Java Foundation framework. Don’t use this method. Use
NSKeyValueCoding.UnknownKeyException(String,Object,String) instead. Creates and returns a
new UnknownKeyException with the specified message and userInfo dictionary.

Constant Type Description

TargetObjectU
serInfoKey

String The key for an entry in the exception’s user info dictionary. The
entry contains the target object that does not implement the
unknown key. This constant is deprecated. You should access
this user info dictionary entry using the object method.

UnknownUserIn
foKey

String The key for an entry in the exception’s user info dictionary. The
entry contains the unknown key. This constant is deprecated.
You should access this user info dictionary entry using the key
method.

C L A S S N S K e y Va l u e C o d i n g . U n k n o w n K e y E x c e p t i o n

107

Instance Methods

key

public String key()

Returns the unknown key that caused the exception to be thrown. Equivalent to getting the
UnknownUserInfoKey entry from the userInfo dictionary.

object

public Object object()

Returns the object on which key-value coding was operating when an unknown key was
encountered. Equivalent to getting the TargetObjectUserInfoKey entry from the userInfo dictionary.

userInfo

public NSDictionary userInfo()

Deprecated in the Java Foundation framework. Don’t use this method. Use the object and key
methods to access the exception’s object and key instead. Returns the receiver’s userInfo
dictionary.

108

C L A S S N S K e y Va l u e C o d i n g . U n k n o w n K e y E x c e p t i o n

109

C L A S S

NSKeyValueCoding.Utility

Inherits from: Object

Package: com.webobjects.foundation

Class Description

The NSKeyValueCoding.Utility class is a convenience that allows you to access the properties of
NSKeyValueCoding objects and non-NSKeyValueCoding objects using the same code. For more
information, see the NSKeyValueCoding and interface specification.

Static Methods

handleQueryWithUnboundKey

public static Object handleQueryWithUnboundKey(
Object anObject,
String key)

If anObject is an NSKeyValueCoding.ErrorHandling, invokes handleQueryWithUnboundKey on anObject;
otherwise invokes NSKeyValueCoding. DefaultImplementation’s handleQueryWithUnboundKey
method with anObject as the object on which to operate.

110

C L A S S N S K e y Va l u e C o d i n g . U t i l i t y

handleTakeValueForUnboundKey

public static void handleTakeValueForUnboundKey(
Object anObject,
Object value,
String key)

If anObject is an NSKeyValueCoding.ErrorHandling, invokes handleTakeValueForUnboundKey on
anObject; otherwise invokes NSKeyValueCoding. DefaultImplementation’s
handleTakeValueForUnboundKey method with anObject as the object on which to operate.

takeValueForKey

public static void takeValueForKey(
Object anObject,
Object value,
String key)

If anObject is an NSKeyValueCoding, invokes takeValueForKey on anObject; otherwise invokes
NSKeyValueCoding. DefaultImplementation’s takeValueForKey method with anObject as the object
on which to operate.

unableToSetNullForKey

public static void unableToSetNullForKey(
Object anObject,
String key)

If anObject is an NSKeyValueCoding.ErrorHandling, invokes unableToSetNullForKey on anObject;
otherwise invokes NSKeyValueCoding. DefaultImplementation’s unableToSetNullForKey method
with anObject as the object on which to operate.

valueForKey

public static Object valueForKey(
Object anObject,
String key)

If anObject is an NSKeyValueCoding, invokes valueForKey on anObject; otherwise invokes
NSKeyValueCoding. DefaultImplementation’s valueForKey method with anObject as the object on
which to operate.

111

C L A S S

NSKeyValueCoding.ValueAccessor

Inherits from: Object

Package: com.webobjects.foundation

Class Description

NSKeyValueCoding.ValueAccessor is an abstract class that establishes a mechanism by which
NSKeyValueCoding can operate on objects’ package access instance variables.

By default, Foundation’s implementations of NSKeyValueCoding can’t access package access
instance variables. If you have package access instance variables in your NSKeyValueCoding
objects, you can make them available to key-value coding in one of the three ways:

■ Implement public setKey and key accessor methods for those instance variables that set and
return the instance variables’ values.

■ Make the instance variables public.

■ Add a subclass of NSKeyValueCoding.ValueAccessor named
KeyValueCodingProtectedAccessor to your package. This class provides a mechanism to
manipulate package access instance variables.

The best solution is to implement accessor methods or to make the instance variables public.
However, if you have a lot of classes with a lot of package access instance variables, you can use
the short-term solution that NSKeyValueCoding.ValueAccessor provides until you make the
necessary changes to your code.

112

C L A S S N S K e y Va l u e C o d i n g . Va l u e A c c e s s o r

To use NSKeyValueCoding.ValueAccessor’s mechanism, simply create a class in your package
as follows:

package yourPackage;
import java.lang.reflect.*;
import com.webobjects.foundation.*;

public class KeyValueCodingProtectedAccessor extends NSKeyValueCoding.ValueAccessor {

public KeyValueCodingProtectedAccessor() {
super();

}

public Object fieldValue(Field field, Object object) throws
IllegalArgumentException, IllegalAccessException {

return field.get(object);
}

public void setFieldValue(Field field, Object value, Object object) throws
IllegalArgumentException, IllegalAccessException {

field.set(object, value);
}

public Object methodValue(Method method, Object object) throws
IllegalArgumentException, IllegalAccessException, InvocationTargetException {

return method.invoke(object, null);
}

public void setMethodValue(Method method, Object value, Object object) throws
IllegalArgumentException, IllegalAccessException, InvocationTargetException {

method.invoke(object, new Object[] {value});
}

}

C L A S S N S K e y Va l u e C o d i n g . Va l u e A c c e s s o r

113

Constructors

NSKeyValueCoding.ValueAccessor

public NSKeyValueCoding.ValueAccessor()

The no-arg constructor. Don’t use this method; because NSKeyValueCoding.ValueAccessor is
an abstract class, you can never create an instance of it.

Static Methods

protectedAccessorForPackageNamed

public static NSKeyValueCoding.ValueAccessor protectedAccessorForPackageNamed(
String packageName)

Returns the value accessor for the package identified by packageName.

removeProtectedAccessorForPackageNamed

public static void removeProtectedAccessorForPackageNamed(
String packageName)

Removes (unregisters) the value accessor for the package identified by packageName.

setProtectedAccessorForPackageWithNamed

public static void setProtectedAccessorForPackageNamed(
NSKeyValueCoding.ValueAccessor accessor,
String packageName)

Sets the value accessor for the package identified by packageName to accessor.

114

C L A S S N S K e y Va l u e C o d i n g . Va l u e A c c e s s o r

Instance Methods

fieldValue

public abstract Object fieldValue(
Object object,
reflect.Field field) throws IllegalArgumentException, IllegalAccessException

Returns the value of object’s field.

methodValue

public abstract Object methodValue(
Object object,
reflect.Method method) throws
IllegalArgumentException,
IllegalAccessException,
reflect.InvocationTargetException

Uses method to return object’s corresponding property value.

setFieldValue

public abstract void setFieldValue(
Object object,
reflect.Field field,
Object value) throws IllegalArgumentException, IllegalAccessException

Sets object’s field value to value.

setMethodValue

public abstract void setMethodValue(
Object object,
reflect.Method method,
Object value) throws

C L A S S N S K e y Va l u e C o d i n g . Va l u e A c c e s s o r

115

IllegalArgumentException,
IllegalAccessException,
reflect.InvocationTargetException

Uses method to set object’s corresponding property to value.

116

C L A S S N S K e y Va l u e C o d i n g . Va l u e A c c e s s o r

117

C L A S S

NSKeyValueCodingAdditions.
DefaultImplementation

Inherits from: Object

Package: com.webobjects.foundation

Class Description

The NSKeyValueCodingAdditions. DefaultImplementation class provides default
implementations of the NSKeyValueCodingAdditions interface. For more information, see the
NSKeyValueCodingAdditions interface specification.

118

C L A S S N S K e y Va l u e C o d i n g A d d i t i o n s . D e f a u l t I m p l e m e n t a t i o n

Static Methods

takeValueForKeyPath

public static void takeValueForKeyPath(
Object anObject,
Object value,
String keyPath)

Sets anObject’s property identified by keyPath to value. A key path has the form
relationship.property (with one or more relationships). This method gets the destination object
for each relationship using valueForKey, and sends the final object a takeValueForKeymessage with
value and property.

See Also: takeValueForKeyPath (NSKeyValueCodingAdditions)

valueForKeyPath

public static Object valueForKeyPath(
Object anObject,
String keyPath)

Returns anObject’s value for the derived property identified by keyPath. A key path has the form
relationship.property (with one or more relationships). This method gets the destination object
for each relationship using valueForKey, and returns the result of a valueForKey message to the final
object.

See Also: valueForKeyPath (NSKeyValueCodingAdditions)

119

C L A S S

NSKeyValueCodingAdditions.Utility

Inherits from: Object

Package: com.webobjects.foundation

Class Description

The NSKeyValueCodingAdditions.Utility class is a convenience that allows you to access the
properties of NSKeyValueCodingAdditions objects and non-NSKeyValueCodingAdditions objects
using the same code. For more information, see the NSKeyValueCodingAdditions interface
specification.

Static Methods

takeValueForKeyPath

public static void takeValueForKeyPath(
Object anObject,
Object value,
String keyPath)

If anObject is an NSKeyValueCodingAdditions, invokes takeValueForKeyPath on anObject; otherwise
invokes NSKeyValueCodingAdditions. DefaultImplementation’s takeValueForKeyPath method
with anObject as the object on which to operate.

120

C L A S S N S K e y Va l u e C o d i n g A d d i t i o n s . U t i l i t y

valueForKeyPath

public static Object valueForKeyPath(
Object anObject,
String keyPath)

If anObject is an NSKeyValueCodingAdditions, invokes valueForKeyPath on anObject; otherwise
invokes NSKeyValueCodingAdditions. DefaultImplementation’s valueForKeyPath method with
anObject as the object on which to operate.

121

C L A S S

NSLock

Inherits from: Object

Implements: NSLocking

Package: com.webobjects.foundation

Class Description

An NSLock object is used to coordinate the operation of multiple threads of execution within the
same application. An NSLock object can be used to mediate access to an application’s global data
or to protect a critical section of code, allowing it to run atomically.

An NSLock object represents a lock that can be acquired by only a single thread at a time. While
one thread holds the lock, any other thread is prevented from doing so until the owner
relinquishes the lock. An application can have multiple NSLock objects, each protecting
different sections of code. It’s safest to create all of the locks before the application becomes
multi-threaded, to avoid race conditions. If you want to create additional locks after the
application becomes multi-threaded, you should create the new lock inside a critical code
section that is itself protected by an existing lock.

The basic interface to NSLock is declared by the NSLocking interface, which defines the lock and
unlock methods. To this base, NSLock adds the tryLock methods. Whereas the lock method
declared in the interface doesn’t return until it is successful, the methods declared in this class
add more flexible means of acquiring a lock.

An NSLock could be used to coordinate the updating of a visual display shared by a number of
threads involved in a single calculation:

122

C L A S S N S L o c k

boolean moreToDo = true;
NSLock myLock = new NSLock();
...
while (moreToDo) {

/* Do another increment of calculation */
/* until there’s no more to do. */
if (myLock.tryLock()) {

/* Update display used by all threads. */
myLock.unlock();

}
}

The NSLock, NSMultiReaderLock, and NSRecursiveLock classes all adopt the NSLocking
protocol and offer various additional features and performance characteristics. See the
NSMultiReaderLock and NSRecursiveLock class descriptions for more information.

Method Types

Constructors

NSLock

Instance methods

lock

lockBeforeDate

toString

tryLock

unlock

C L A S S N S L o c k

123

Constructors

NSLock

public NSLock()

Creates an NSLock object.

Instance Methods

lock

public synchronized void lock()

Conformance to NSLocking. See the method description of lock in the interface specification for
NSLocking.

lockBeforeDate

public boolean lockBeforeDate(NSTimestamp timestamp)

This method is deprecated. Use tryLock(NSTimestamp timestamp) instead.

toString

public String toString()

Returns a string representation of the receiver indicating whether or not the lock is taken.

124

C L A S S N S L o c k

tryLock

public synchronized boolean tryLock()

Attempts to acquire a lock. Returns immediately, with a value of true if successful and false
otherwise.

public synchronized boolean tryLock(long msec)

Attempts to acquire a lock for msec milliseconds. The thread is blocked until the receiver acquires
the lock or msec milliseconds have passed. Returns true if the lock is acquired within this time
limit. Returns false if the time limit expires before a lock can be acquired.

public boolean tryLock(NSTimestamp timestamp)

Attempts to acquire a lock until the time specified by timestamp. The thread is blocked until the
receiver acquires the lock or timestamp is reached. Returns true if the lock is acquired within this
time limit. Returns false if the time limit expires before a lock can be acquired.

unlock

public synchronized void unlock()

Conformance to NSLocking. See the method description of unlock in the interface specification
for NSLocking.

125

C L A S S

NSLog

Inherits from: Object

Package: com.webobjects.foundation

Class Description

NSLog is a static class that you use to access the WebObjects Foundation logging system. It
allows you to log debugging messages, and provides functionality for controlling the level and
focus of debugging output. Logging with NSLog offers greater flexibility and integration with
the WebObjects runtime and debugging system than does logging with System.out, System.err,
or java.rmi.server.LogStream.

By specifying debug groups and the debug level using NSLog’s methods, you can control the
scope and granularity of debugging output. Perhaps you are only interested in seeing
debugging output that relates to the Enterprise Objects Framework, or more specifically,
debugging output that relates to database fetches. NSLog is designed to allow you to specify the
output you want to see, based on predefined debug groups and levels. See the section on
“Creating Custom Debug Groups” (page 128) to understand how NSLog uses a bit mask to
specify sets of debug groups.

Although NSLog provides functionality for advanced debugging, it is also as simple to use as
outputting to System.out.*:

NSLog.out.appendln(“WebObjects”);

The above code outputs “WebObjects” in the console by default, but output can be directed to
custom NSLog.Loggers.

126

C L A S S N S L o g

The logging system is made up of three classes: NSLog, NSLog.Logger, and
NSLog.PrintStreamLogger. NSLog provides methods for controlling the level (amount of
information sent to the logger) and focus (scope of the information sent to the logger) of
debugging output. NSLog.Logger is an abstract class that provides the basic functionality for
NSLog. NSLog.PrintStreamLogger is a subclass of NSLog.Logger and appends information to
the debug logger which is directed to a java.io.PrintStream pointing to System.out, System.err,
or to a custom java.io.PrintStream.

The NSLog class cannot be instantiated.

Redirecting the Output of NSLog
The Foundation logging system offers the ability to create custom logging implementations, and
to redirect their output to custom java.io.PrintStreams, such as local files. This example
illustrates these features of the logging system, and directs output to a custom
java.io.PrintStream, the local file “/Local/Users/log.txt”:

// Output defaults to System.out.
NSLog.PrintStreamLogger aLogger = new NSLog.PrintStreamLogger();

// New print stream based on path.
PrintStream aStream = NSLog.printStreamForPath (“/Local/Users/log.txt”);

// Direct output to the custom PrintStream.
aLogger.setPrintStream (aStream);

// Assign the custom PrintStreamLogger to the declared instances of NSLogger in NSLog.
NSLog.setOut(aLogger);
NSLog.setErr(aLogger);
NSLog.setDebug(aLogger);

// Enable verbose logging.
aLogger.setIsVerbose (true);
String str = “WebObjects”;

// Outputs “[2000-10-18 09:01:00 GMT] <main> WebObjects”
aLogger.appendln (str);

// Disables logging.
aLogger.setIsEnabled (false);

C L A S S N S L o g

127

// Outputs nothing, since logging is disabled.
daLogger.appendln (str);

By subclassing NSLog.Logger instead of NSLog.PrintStreamLogger, you can provide custom
logging implementations that are not based on java.io.PrintStreams, such as outputting to email,
Swing windows, etc. See the documentation for “NSLog.Logger” (page 139) for more details.

Debug Groups
To control the scope of the debug information that is sent to the logger, NSLog declares a number
of debug groups, which are listed in the “Constants” (page 130) section. By default, logging is
enabled for all the debug groups declared by NSLog. All the WebObjects frameworks, including
Foundation and EOF, use NSLog for debugging, and rely on debug groups to control the scope
of their debug logging.

As an example, this code uses debug groups to disable logging for debug information related to
the Enterprise Objects Framework:

NSLog.refuseDebugLoggingForGroups(NSLog.DebugGroupEnterpriseObjects)

Before sending debug information to the logger, all classes that log EOF-related debug
information check to see if debug logging is allowed for EOF-related issues using one of the
debugLoggingAllowedFor... methods. Since the above code removed the DebugGroupEnterpriseObjects bit
from the bit mask, EOF-related issues won’t be sent to the logger.

Debug Levels
To control the granularity of debug information that is sent to the logger, NSLog declares a
number of debug levels, which are listed in the “Constants” (page 130) section. A debug level
specifies the importance of the information displayed in a message. These messages may be the
result of exceptions or errors, but may also just be informational, such as printing variable
values.

When an exception is encountered, debug information should only be sent to the logger if the
debug level is DebugLevelCritical or greater. If the debug level is set to DebugLevelOff, any error
message in the catch block should not be sent to the logger. A simple example:

} catch (SomeException e) {
if (NSLog.debugLoggingAllowedForLevel(DebugLevelCritical) {

128

C L A S S N S L o g

NSLog.debug.appendln(“Exception encountered: “ + e.getMessage());
NSLog.debug.appendln(e);

}
}

When you want to see the value of a variable at particular points in your application, you use
DebugLevelInformational to control logging. Logging the values of variables can be expensive, so it
is prudent to wrap this kind of logging in a debug level conditional. For instance, you should
conditionalize the logging of values in an array like this:

// Assuming declaration of int[] anArray = new int[10];
if debugLoggingAllowedForLevel(DebugLevelInformational) {

for (i = 0, i < 9, i++) {
NSLog.out.appendln(anArray[i]);

}
}

DebugLevelDetailed should be used to conditionalize logging for computationally intensive tasks,
such as JDBC function calls.

Note that if you specify the allowed debug level using the setAllowedDebugLevel method, messsages
of that level and lower will be logged. That is, DebugLevelDetailed will also log messages of level
DebugLevelInformational and messages of level DebugLevelCritical. Likewise, DebugLevelInformational
will also log messages of level DebugLevelCritical, but not messages of level DebugLevelDetailed.

Creating Custom Debug Groups
NSLog uses a bit mask to specify a set of debug groups, which means that you can easily create
a custom debug groups mask for more flexible logging. For instance, if you are interested in
logging debugging output only for EOF-related issues and EOModel-related issues, you can
simply bitwise inclusive OR the groups together using the “|” operator in Java. That creates a
debug groups mask which you can use to more flexibly monitor and log errors relating to those
two issues. To do this:

// First, remove all debug groups from the mask, since they are all enabled by default.
NSLog.refuseDebugLoggingForGroupsMask(~0);
// Create a custom debug groups mask.
NSLog.allowDebugLoggingForGroupsMask

(DebugGroupEnterpriseObjects | DebugGroupModel);

C L A S S N S L o g

129

In addition to the debug groups provied for you by WebObject, you can add your own debug
groups. The high 32 bits (i.e. bits 32 - 63) are available to developers. The low bits are reserved
by WebObjects. An example of declaring a new debug group:

public static final long DebugGroupCustomGroup = 1 << 32;

NSLog From the Command Line
You can enable debug groups and levels from the command line. For example:

% cd MyJavaWOApp.woa
% ./MyJavaWOApp -DNSDebugLevel=2 -DNSDebugGroups=32

The above code enables DebugLevelInformational and DebugGroupResources. The argument for debug
level is passed in as an int; for debug groups, the argument is passed in as a long. Therefore, you
must calculate the long value for each debug group you pass on the command line (in order to
get the bit position for each group).

To do this, calculate 2 ^ (value for the debug group as listed in the “Constants” (page 130)
section). For example, to enable DebugGroupWebObjects, calculate 2 ^ 2, and pass the result as the
argument on the command line.

You can enable multiple debug groups by summing the long values of each group. For example:

% ./MyJavaWOApp -DNSDebugLevel=2 -DNSDebugGroups=16 + 32 + 1024

The above code enables DebugGroupMultithreading. DebugGroupResources, and DebugGroupFormatting.

130

C L A S S N S L o g

Constants

NSLog defines the following constants:

Constant Type Value Description

DebugGroupApplicationGeneration long 3 The debug group for logging of general
application generation issues.

DebugGroupArchiving long 6 The debug group for logging of encoding
and decoding issues.

DebugGroupAssociations long 19 The debug group for logging of association
exceptions and problems.

DebugGroupComponentBindings long 9 The debug group for logging of binding
exceptions and problems.

DebugGroupControllers long 20 The debug group for logging of controller
exceptions and problems.

DebugGroupComponents long 26 Description forthcoming.

DebugGroupDatabaseAccess long 16 The debug group for logging of database
access exceptions and problems.

DebugGroupDeployment long 22 The debug group for logging of Monitor,
wotaskd, and deployment related issues.

DebugGroupEnterpriseObjects long 1 The debug group for enabling logging of
general EOF issues.

DebugGroupFormatting long 10 The debug group for logging of formatting
exceptions and problems.

DebugGroupIO long 13 The debug group for logging of I/O
exceptions and problems.

DebugGroupKeyValueCoding long 8 The debug group for logging of key value
coding exceptions and problems

C L A S S N S L o g

131

DebugGroupModel long 15 The debug group for logging of EOModel
exceptions, problems, and inconsistencies.

DebugGroupMultithreading long 4 The debug group for logging of threading
issues.

DebugGroupParsing long 23 The debug group for logging of HTML
parsing issues and other HTML-related
issues.

DebugGroupQualifiers long 11 The debug group for logging of qualifier
issues.The debug group for logging of
formatting exceptions and problems.

DebugGroupReflection long 24 The debug group for logging of class
introspection issues.

DebugGroupRequestHandling long 25 The debug group for logging of issues related
to the request-response loop.

DebugGroupResources long 5 The debug group for logging of resource
loading/lookup exceptions and problems.

DebugGroupRules long 21 The debug group for logging of dynamic rule
system issues and logging issues.

DebugGroupSQLGeneration long 17 The debug group for logging of SQL
generation issues and logging.

DebugGroupTiming long 14 The debug group for logging of dynamic rule
system issues.

DebugGroupUserInterface long 18 The debug mask for logging of widget set
and view exceptions and problems.

DebugGroupValidation long 7 The debug group for logging of validation
exceptions and problems.

DebugGroupWebObjects long 2 The debug group for enabling logging of
general WebObjects framework issues.

DebugLevelOff int 0 Logs no messages. The default.

Constant Type Value Description

132

C L A S S N S L o g

Method Types

Setting the debug groups mask

setAllowedDebugGroups

Setting and retrieving the debug level

setAllowedDebugLevel

allowedDebugLevel

Adding and removing debug groups to the mask

allowDebugLoggingForGroups

refuseDebugLoggingForGroups

Determining if debug logging is enabled for a particular debug group or groups mask

debugLoggingAllowedForLevel

debugLoggingAllowedForGroups

debugLoggingAllowedForLevelAndGroups

DebugLevelCritical int 1 Logs debug messages that should not be sent
in non-debug mode, such as stack traces.
Logging with this debug level is not likely to
affect the performance of your application.

DebugLevelInformational int 2 Logs debug messages that don’t qualify as
computationally intensive. Logging with this
debug level will slow your application only
moderately.

DebugLevelDetailed int 3 Logs debug messages that qualify as
computationally intensive, such as JDBC
function calls. Logging with this debug level
will slow your application considerably.

Constant Type Value Description

C L A S S N S L o g

133

Redirecting output to custom PrintStreams

setDebug

setErr

setOut

Convenience methods

printStreamForPath

throwableAsString

Static Methods

allowDebugLoggingForGroups

public static synchronized void allowDebugLoggingForGroups(
long debugGroups)

Enables logging for the debug group or the debug groups mask specified by debugGroups by
adding it (via bitwise inclusive OR) to the debug groups mask. For instance, to allow debug
logging for EOF-related issues, add the EOF debug group, DebugGroupEnterpriseObjects to the mask:

NSLog.allowDebugLoggingForGroups(DebugGroupEnterpriseObjects);

This differs from setAllowedDebugGroups in that allowDebugLoggingForGroups adds debug groups and
debug groups masks to the bit mask in NSLog. setAllowedDebugGroups, however, replaces the bit
mask in NSLog with the debug group or debug groups mask it is passed. For example,

// This will add the EOF debug group to the mask:
NSLog.allowDebugLoggingForGroups(DebugGroupEnterpriseObjects);

// This will replace all debug groups and masks in the bit mask with the EOF debug group
NSLog.setAllowedDebugGroups(DebugGroupEnterpriseObjects);

Use the refuseDebugLoggingForGroups method to disallow specific debug groups.

By default, logging is allowed for all debug groups. If you set the debug level to be low (for
example, DEBUG_LEVEL-DETAILED), the debugging output may be overwhelming.

134

C L A S S N S L o g

See “Creating Custom Debug Groups” (page 128) for more information.

allowedDebugLevel

public static int allowedDebugLevel()

Returns the allowed debug level.

debugLoggingAllowedForLevel

public static boolean debugLoggingAllowedForLevel(int aDebugLevel)

Returns true if debug logging is allowed for aDebugLevel. Debug logging is allowed if aDebuglevel is
less than or equal to the debug level set by setAllowedDebugLevel. This is because the highest debug
level, DebugLevelDetailed, implies DebugLevelInformational which implies DebugLevelCritical.

See the “Debug Levels” (page 127) for more information.

debugLoggingAllowedForGroups

public static boolean debugLoggingAllowedForGroups(long debugGroups)

Returns true if the debug groups specified by debugGroups are enabled (that is, the debug groups
are part of the debug groups bit mask).

See the “Creating Custom Debug Groups” (page 128) for code examples.

debugLoggingAllowedForLevelAndGroups

public static boolean debugLoggingAllowedForLevelAndGroups(
int aDebugLevel,
long debugGroups)

Returns true if the debug groups specified by debugGroups are enabled, and if the debug level is less
than or equal to the debug level set by setAllowedDebugLevel.

C L A S S N S L o g

135

printStreamForPath

public static java.io.PrintStream printStreamForPath(String aPath)

Returns a java.io.PrintStream to a file at the specified path. Returns null if there is any problem
with the path (i.e. it doesn’t exist), or with the file at that path (i.e. it’s a path to a directory, so a
PrintStream can’t be created for it).

refuseDebugLoggingForGroups

public static synchronized void refuseDebugLoggingForGroups(
long debugGroups)

Disables debug logging for the debug groups mask specified by debugGroups.

By default, logging is allowed for all debug groups. If you set the debug level to be low (for
example, DEBUG_LEVEL-DETAILED), the debugging output may be overwhelming.

See allowDebugLoggingForGroups for more information.

setAllowedDebugGroups

public static void setAllowedDebugGroups(
long debugGroups)

Determines the set (the bit mask) of allowed debug groups. Typically, this method is invoked at
the beginning of the application execution, since it affects logging behavior in the entire
application, and completely overrides the global debug groups mask. If you want to turn
logging on for a smaller scope and for a shorter period of execution, you should use
allowDebugLoggingForGroups and refuseDebugLoggingForGroups.

By default, logging is allowed for all debug groups. If you set the debug level to be low (for
example, DEBUG_LEVEL-DETAILED), the debugging output may be overwhelming.

See allowDebugLoggingForGroups for an explanation of when to use that method or
setAllowedDebugGroups.

Note: This method completely overrides the global debug groups mask, and affects logging
behavior in the entire application. It is suggested that you only use it once at the beginning of
application execution.

136

C L A S S N S L o g

setAllowedDebugLevel

public static void setAllowedDebugLevel(int aDebugLevel)

Sets the debug level to aDebugLevel. Throws an IllegalArgumentException if aDebugLevel is invalid.
Typically, this method is invoked at the beginning of the application execution, since it affects
logging behavior in the entire application.

By default, logging is allowed for all debug groups. If you set the debug level to be low (for
example, DEBUG_LEVEL-DETAILED), the debugging output may be overwhelming.

See the “Constants” section in this document for a list of predefined debug levels.

setDebug

public static void setDebug(NSLog.Logger aLogger)

Sets the debugging logger NSLog.debug to aLogger. By default, NSLog.debug is a
NSLog.PrintStreamLogger that sends its output to System.err. NSLog.debug is used for status
and error messages that will conditionally be shown.

setErr

public static void setErr(NSLog.Logger aLogger)

Sets the logger NSLog.err to aLogger. By default, NSLog.err is a NSLog.PrintStreamLogger that
sends its output to System.err. NSLog.err is used for error messages that will always be shown.

setOut

public static void setOut(NSLog.Logger aLogger)

Sets the logger NSLog.out to aLogger. By default, NSLog.out is a NSLog.PrintStreamLogger that
sends its output to System.out. NSLog.out is used for status messages that will always be shown.

throwableAsString

public static String throwableAsString(Throwable aThrowable)

Returns the stack trace of aThrowable as a string.

139

C L A S S

NSLog.Logger

Inherits from: Object

Package: com.webobjects.foundation

Class Description

NSLog.Logger is an abstract class that specifies the core functionality for NSLog.

You can subclass NSLog.Logger to add custom logging implementations based on Email,
java.io.PrintWriters, display to a Swing window, etc. To add custom logging implementations
based on java.io.PrintStream, subclass NSLog.PrintStreamLogger. If you subclass
NSLog.Logger, you need only implement two of the appendln methods: appendln(Object), since the
other appendln methods invoke appendln(Object); and appendln(). You must also implement flush() if
you subclass.

See the class specification on “NSLog” (page 125) and “NSLog.PrintStreamLogger” (page 145)
for more information.

Method Types

Appending to output

appendln

140

C L A S S N S L o g . L o g g e r

Maintaining logging options

isEnabled

isVerbose

setIsEnabled

setIsVerbose

Flushing the log

flush

Constructors

NSLog.Logger

public NSLog.Logger()

Description forthcoming.

Instance Methods

appendln

public abstract void appendln(Object anObject)

Since this is an abstract method, it does nothing by default. It’s up to the subclass to implement
the behavior. As implemented in NSLog, this method appends the string representation of
anObject to the logging output. For example, a generic object passed to this method might output
“java.lang.Object@67e5d”. The string representation is derived from the toString() method of the
object.

public void appendln(Throwable aThrowable)

Calls appendln(Object anObject) with NSLog.throwableAsString(aThrowable) as an argument.

C L A S S N S L o g . L o g g e r

141

public void appendln(int anInt)

Calls appendln(Object anObject), by transforming anInt into a Java Integer class object.

public void appendln(float aFloat)

Calls appendln(Object anObject) by transforming aFloat into a Java Float class object.

public void appendln(short aShort)

Calls appendln(Object anObject), by transforming aShort into a Java Short class object.

public void appendln(long aLong)

Calls appendln(Object anObject), by transforming anInt into a Java Long class object.

public void appendln(byte[] aByteArray)

Calls appendln(Object anObject), by transforming aByte[] into a Java String class object.

public void appendln(char[] aCharArray)

Calls appendln(Object anObject), by transforming aChar[] into a Java String class object.

public void appendln(boolean aBoolean)

Calls appendln(Object anObject), passing true if aBoolean is true, false if aBoolean is false.

public void appendln(double aDouble)

Calls appendln(Object anObject), by transforming aDouble into a Java Double class object.

public void appendln(char aChar)

Calls appendln(Object anObject), by transforming aChar[] into a Java String class object.

public void appendln(byte aByte)

Calls appendln(Object anObject), by transforming aByte into a Java Byte class object.

public void appendln()

Since this is an abstract method, it does nothing by default. As implemented in NSLog, this
method appends a new line to the logging output.

142

C L A S S N S L o g . L o g g e r

flush

public abstract void flush()

Since this is an abstract method, it does nothing by default. As implemented in NSLog, this
method allows you to flush the internal buffer.

isEnabled

public boolean isEnabled()

Returns the value of an internal boolean, which defaults to true, and is set by setIsEnabled. As
implemented in NSLog, the internal boolean regulates whether logging is enabled or disabled.
When logging is disabled, the receiver ignores all invocations of appendln. By default, logging is
enabled.

isVerbose

public boolean isVerbose()

Returns the value of an internal boolean, which defaults to true, and is set by setIsVerbose. As
implemented in NSLog, the internal boolean regulates whether verbose logging is activated or
deactivated. See the method description for setIsVerbose for more information. By default,
verbose logging is disabled.

setIsEnabled

public void setIsEnabled(boolean aBoolean)

Sets the value of an internal boolean to aBoolean. As implemented in NSLog, the internal boolean
disables logging if aBoolean is false. When logging is disabled, the receiver ignores all invocations
of appendln. By default, logging is enabled.

C L A S S N S L o g . L o g g e r

143

setIsVerbose

public void setIsVerbose(boolean aBoolean)

Sets the value of an internal boolean to aBoolean. As implemented in NSLog, the internal boolean
enables verbose logging if aBoolean is true. Verbose logging produces output of the format:
“[Current Time] <Current Thread Name> object ”. By default, verbose logging is disabled in NSLog.

144

C L A S S N S L o g . L o g g e r

145

C L A S S

NSLog.PrintStreamLogger

Inherits from: NSLog.Logger

Package: com.webobjects.foundation

Class Description

NSLog.PrintStreamLogger is a concrete subclass of NSLog.Logger. It logs output to a
java.io.PrintStream which is contained by the logger. This PrintStream can be changed, which
causes the receiver to output log messages somewhere else, such as a local file. Methods are
provided to enable and disable logging, and to enable and disable verbose logging.

NSLog.out and NSLog.debug are PrintStreamLoggers that point at System.out. NSLog.err is a
PrintStreamLogger that points to System.err.

NSLog.PrintStreamLogger looks at the value of the internal variables set by
NSLog.Logger.setIsVerbose() and NSLog.Logger.setIsEnabled() to determine whether to
produce verbose output and to determine whether to log messages to the logger. See the method
descriptions for these methods in the documentation for “NSLog.Logger” (page 139).

146

C L A S S N S L o g . P r i n t S t r e a m L o g g e r

Method Types

All methods

NSLog.PrintStreamLogger

appendln

appendln

flush

printStream

setPrintStream

Constructors

NSLog.PrintStreamLogger

public NSLog.PrintStreamLogger(java.io.PrintStream aPrintStream)

Creates a new NSLog.PrintStreamLogger which directs output to aPrintStream. Throws an
IllegalArgumentException if aPrintStream is null.

public NSLog.PrintStreamLogger()

Creates a new NSLog.PrintStreamLogger which directs output to System.out.

C L A S S N S L o g . P r i n t S t r e a m L o g g e r

147

Instance Methods

appendln

public void appendln()

Writes a new line to the receiver’s PrintStream.

appendln

public void appendln(Throwable aThrowable)

Writes the stack trace of aThrowable to the receiver’s PrintStream.

appendln

public void appendln(Object anObject)

Writes anObject to the receiver’s PrintStream.

flush

public void flush()

Flush’s the receiver’s PrintStream by invoking the PrintStream’s flush method.

printStream

public java.io.PrintStream printStream()

Returns the receiver’s PrintStream.

148

C L A S S N S L o g . P r i n t S t r e a m L o g g e r

setPrintStream

public void setPrintStream(java.io.PrintStream aPrintStream)

Sets the receiver’s print stream to aPrintStream. This redirects the receiver’s output. For
example, to redirect all log messages to the local file /Local/Users/log.txt, use the following
code:

NSLog.PrintStreamLogger aLogger =
new NSLog.PrintStreamLogger(); // Output defaults to System.out

PrintStream aStream =
NSLog.printStreamForPath (“/Local/Users/log.txt”); // New print stream based on path.

aLogger.setPrintStream (aStream); // Direct output to the custom PrintStream.
NSLog.setOut(aLogger); // Assign the custom PrintStreamLogger to the declared instances
of NSLogger in NSLog
NSLog.setErr(aLogger);
NSLog.setDebug(aLogger);
aLogger.appendln(anObject);

149

C L A S S

NSMultiReaderLock

Inherits from: Object

Implements: NSLocking

Package: com.webobjects.foundation

Class Description

The NSMultiReaderLock class provides reader and writer locks . The locks are recursive; a
single thread can request a lock many times, but a lock is actually taken only on the first request.
Likewise, when a thread indicates it’s finished with a lock, it takes an equal number of unlock...
invocations to return the lock.

There’s no limit on the number of reader locks that a process can take. However, there can only
be one writer lock at a time, and a writer lock is not issued until all reader locks are returned.
Reader locks aren’t issued to new threads when there is a thread waiting for a writer lock, but
threads that already have a reader lock can increment their lock count.

NSMultiReaderLock correctly handles promotion of a reader lock to a writer lock, and the
extension of a reader lock to the current writer. This prevents a thread from deadlocking on itself
when requesting a combination of lock types.

NSMultiReaderLocks are slightly more time-expensive than NSRecursiveLocks because the
recursion count has to be stored per-thread, causing each request for a reader lock to incur at
least one hash lookup. Writer locks are even more expensive because NSMultiReaderLock must
poll the hashtable until all reader locks have been returned before the writer lock can be taken.

150

C L A S S N S M u l t i R e a d e r L o c k

Method Types

Constructors

NSMultiReaderLock

Managing reader locks

lockForReading

retrieveReaderLocks

suspendReaderLocks

tryLockForReading

unlockForReading

Managing writer locks

lock

lockForWriting

tryLockForWriting

unlock

unlockForWriting

Methods inherited from Object

toString

C L A S S N S M u l t i R e a d e r L o c k

151

Constructors

NSMultiReaderLock

public NSMultiReaderLock()

Creates an NSMultiReaderLock object.

Instance Methods

lock

public void lock()

Conformance to NSLocking. See the method description of lock in the interface description for
NSLocking. This method is equivalent to lockForWriting.

lockForReading

public void lockForReading()

Acquires a reader lock for the current thread. If the current thread doesn’t already have a lock,
the method blocks if there are any waiting or active writer locks. If the current thread already
has a lock (reader or writer), the lock request count is incremented.

lockForWriting

public void lockForWriting()

Gets a writer lock for the current thread. If the current thread already has one, the lock request
count is incremented, but a new lock is not taken. If the requesting thread has outstanding reader
locks, they are temporarily dropped until the writer lock is returned. If other threads have
outstanding reader locks, this method blocks until all reader locks have been freed.

152

C L A S S N S M u l t i R e a d e r L o c k

retrieveReaderLocks

public void retrieveReaderLocks()

Reinstates the current thread’s reader locks that have been suspended using suspendReaderLocks.

suspendReaderLocks

public void suspendReaderLocks()

Temporarily relinquishes all of the current thread’s reader locks, releasing the lock if all reader
locks are unlocked. To reinstate the current thread’s suspended reader locks, use the
retrieveReaderLocks method.

toString

public String toString()

Returns a string representation of the receiver containing the current thread name and a table
with the names and reader lock counts of all the receiver’s threads.

tryLockForReading

public boolean tryLockForReading()

Returns true if the current thread is able to immediately obtain a reader lock. There are three
ways this can happen:

1. There are no outstanding writer locks.

2. The writer lock is held by the current thread.

3. The current thread already has a reader lock.

This method implicitly calls lockForReading, so you must call unlockForReading if tryLockForReading
returns true.

C L A S S N S M u l t i R e a d e r L o c k

153

tryLockForWriting

public boolean tryLockForWriting()

Returns true if the current thread is able to immediately obtain a writer lock. Returns false if
another thread already has the lock or is queued to receive it. This method implicitly calls
lockForWriting, so you must call unlockForWriting if tryLockForWriting returns true.

unlock

public void unlock()

Conformance to NSLocking. See the method description of unlock in the interface description for
NSLocking. This method is equivalent to unlockForWriting.

unlockForReading

public void unlockForReading()

Releases a reader lock for the current thread. Each lockForReading message must be paired with an
unlockForReading message before the lock is actually released. Invoking this method when the lock
count is zero does nothing.

unlockForWriting

public void unlockForWriting()

Releases a writer lock for the current thread. Each lockForWriting message must be paired with an
unlockForWriting message before the lock is actually released. When the writer lock is released, it
checks to see if the thread previously had any reader locks. If so, the reader lock count is restored.
Invoking this method when the lock count is zero does nothing.

154

C L A S S N S M u l t i R e a d e r L o c k

155

C L A S S

NSMutableArray

Inherits from: NSArray

Package: com.webobjects.foundation

Class Description

The NSMutableArray defines the programmatic interface for managing collections of objects
called arrays. It adds insertion and deletion operations to the basic array-handling behavior
inherited from its superclass, NSArray.

Table 0-7 describes the NSMutableArray methods that provide the basis for all
NSMutableArray’s other methods; that is, all other methods are implemented in terms of these.
If you create a subclass of NSMutableArray, you need only ensure that these base methods work
properly. Having done so, you can be sure that all your subclass's inherited methods operate
properly.

Table 0-7 NSMutableArray’s Base API

Method Description

addObject Adds an object to the array.

addObjects Adds multiple objects to the array.

insertObjectAtIndex Inserts an object into the array at a specified index.

removeAllObjects Empties the receiver of all its elements.

156

C L A S S N S M u t a b l e A r r a y

The other methods provide convenient ways of inserting an object into a specific slot in the array
and removing an object based on its identity or position in the array.

Method Types

Creating mutable arrays

NSMutableArray

immutableClone

clone

Adding and replacing objects

addObject

addObjects

addObjectsFromArray

insertObjectAtIndex

replaceObjectAtIndex

replaceObjectsInRange

setArray

removeObjectAtIndex Removes the object at a specified index from the array.

replaceObjectAtIndex(Object, int) Replaces the object at a specified index with another object.

setArray Sets an array’s elements to the ones in another array.

sortUsingComparator Sorts the elements of the array.

Table 0-7 NSMutableArray’s Base API

Method Description

C L A S S N S M u t a b l e A r r a y

157

Removing objects

removeAllObjects

removeIdenticalObject

removeLastObject

removeObject

removeObjectAtIndex

removeObjects

removeObjectsInArray

removeObjectsInRange

Rearranging objects

sortUsingComparator

Constructors

NSMutableArray

public NSMutableArray()

Creates an empty mutable array.

public NSMutableArray(int capacity)

Creates an empty mutable array with enough allocated memory to hold the number of objects
specified by capacity, a number greater than 0. NSMutableArrays expand as needed, so capacity
simply establishes the object's initial capacity.

public NSMutableArray(NSArray anArray)

Creates a mutable array containing the objects in anArray.

public NSMutableArray(Object anObject)

Creates a mutable array containing the single element anObject.

158

C L A S S N S M u t a b l e A r r a y

public NSMutableArray(Object[] objects)

Creates a mutable array containing objects.

public NSMutableArray(
Object[] objects,
NSRange aRange)

Creates a mutable array containing the objects from objects in the range specified by aRange.
After an immutable array has been initialized in this way, it can’t be modified.

public NSMutableArray(
java.util.Vector aVector,
NSRange aRange,
boolean checkForNull)

Creates a mutable array containing the objects from aVector in the range specified by aRange. The
checkForNull argument controls the method’s behavior when it encounters a null value in the
vector: if checkForNull is true, the null value is simply ignored. If checkForNull is false, the method
raises an IllegalArgumentException.

Instance Methods

addObject

public void addObject(Object anObject)

Inserts anObject at the end of the receiver. If anObject is null, an IllegalArgumentException is
thrown.

addObjects

public void addObjects(Object[] otherArray)

Adds the objects contained in otherArray to the end of the receiver’s array of objects. If any of the
objects in otherArray are null, an IllegalArgumentException is thrown.

C L A S S N S M u t a b l e A r r a y

159

addObjectsFromArray

public void addObjectsFromArray(NSArray anArray)

Adds the objects contained in anArray to the end of the receiver’s array of objects.

clone

public Object clone()

Creates a clone of the receiver. NSMutableArray’s implementation simply creates a new
NSMutableArray with the objects in the receiver.

immutableClone

public NSArray immutableClone()

Returns a copy of the receiver as an immutable NSArray.

insertObjectAtIndex

public void insertObjectAtIndex(
Object anObject,
int index)

Inserts anObject into the receiver at index. If index is already occupied, the objects at index and
beyond are shifted down one slot to make room. index cannot be greater than the number of
elements in the array. This method throws an IllegalArgumentException if anObject is null or if
index is greater than the number of elements in the array.

Note that NSArrays are not like C arrays. That is, even though you might specify a size when
you create an array, the specified size is regarded as a hint; the actual size of the array is still 0.
Because of this, you can only insert new objects in ascending order—with no gaps. Once you add
two objects, the array's size is 2, so you can add objects at indexes 0, 1, or 2. Index 3 is illegal and
out of bounds; if you try to add an object at index 3 (when the size of the array is 2),
NSMutableArray throws an exception.

160

C L A S S N S M u t a b l e A r r a y

mutableClone

public NSMutableArray mutableClone()

Description forthcoming.

removeAllObjects

public void removeAllObjects()

Empties the receiver of all its elements.

removeIdenticalObject

public void removeIdenticalObject(Object anObject)

public void removeIdenticalObject(
Object anObject,
NSRange aRange)

Removes all occurrences of anObject throughout the array; or if aRange provided, removes all
occurrences of anObject in the specified range. These methods use the indexOfIdenticalObject
method to locate matches and remove them by using removeObjectAtIndex. Throws an
IllegalArgumentException if anObject is null or if aRange is out of bounds.

removeLastObject

public void removeLastObject()

Removes the receiver’s element with the highest-valued index. Throws an
IllegalArgumentException if there are no objects in the array.

C L A S S N S M u t a b l e A r r a y

161

removeObject

public void removeObject(Object anObject)

public void removeObject(
Object anObject,
NSRange aRange)

Removes all occurrences of anObject throughout the array; or if aRange provided, removes all
occurrences of anObject in the specified range. These methods use the indexOfObject method to
locate matches and remove them by using removeObjectAtIndex. Thus, matches are determined on
the basis of an object’s response to the equals message. Throws an IllegalArgumentException if
anObject is null or if aRange is out of bounds.

removeObjectAtIndex

public void removeObjectAtIndex(int index)

Removes the object at index and moves all elements beyond index up one slot to fill the gap. This
method throws a IllegalArgumentException if the array is empty or if index is beyond the end of
the array.

removeObjects

public void removeObjects(Object[] objects)

This method is similar to removeObject, but allows you to efficiently remove the set of objects in
objects with a single operation.

removeObjectsInArray

public void removeObjectsInArray(NSArray otherArray)

This method is similar to removeObject, but allows you to efficiently remove the set of objects in
otherArray with a single operation.

162

C L A S S N S M u t a b l e A r r a y

removeObjectsInRange

public void removeObjectsInRange(NSRange aRange)

Removes each of the objects within the specified range in the receiver using removeObjectAtIndex.
Throws an IllegalArgumentException if aRange is out of bounds.

replaceObjectAtIndex

public void replaceObjectAtIndex(
Object anObject,
int index)

Replaces the object at index with anObject. This method throws an IllegalArgumentException if
anObject is null or if index is beyond the end of the array.

public void replaceObjectAtIndex(
int index,
Object anObject)

This method is deprecated. Use replaceObjectAtIndex(Object, int) instead.

replaceObjectsInRange

public void replaceObjectsInRange(
NSRange aRange,
NSArray otherArray,
NSRange otherRange)

Replaces the objects in the receiver specified by aRange with the objects in otherArray specified by
otherRange. aRange and otherRange don’t have to be equal; if aRange is greater than otherRange, the extra
objects in the receiver are removed. If otherRange is greater than aRange, the extra objects from
otherArray are inserted into the receiver.

C L A S S N S M u t a b l e A r r a y

163

setArray

public void setArray(NSArray otherArray)

Sets the receiver’s elements to those in otherArray. Shortens the receiver, if necessary, so that it
contains no more than the number of elements in otherArray. Replaces existing elements in the
receiver with the elements in otherArray. If there are more elements in otherArray than there are in
the receiver, the additional items are added.

sortUsingComparator

public void sortUsingComparator(NSComparator aComparator)
throws NSComparator.ComparisonException

Sorts the receiver’s elements, as determined by aComparator. Throws an NSComparator.Exception
if aComparator is null.

See Also: sortedArrayUsingComparator (NSArray)

164

C L A S S N S M u t a b l e A r r a y

165

C L A S S

NSMutableData

Inherits from: NSData : Object

Implements: Cloneable
java.io.Serializable
NSCoding

Package: com.webobjects.foundation

Class Description

The NSMutableData class declares the programmatic interface to an object that contains
modifiable data in the form of bytes. The data grows automatically if necessary.

166

C L A S S N S M u t a b l e D a t a

Table 0-8 describes the NSMutableData methods that provide the basis for all NSMutableData’s
other methods; that is, all other methods are implemented in terms of these nine. If you create a
subclass of NSMutableData, you need only ensure that these base methods work properly.
Having done so, you can be sure that all your subclass's inherited methods operate properly.

To modify the data, use the setData, appendByte, appendBytes, and appendData methods. If you want to
set a range of bytes to zero, use the resetBytesInRange method. To change the length of the data, use
the setLength and increaseLengthBy methods.

Table 0-8 NSMutableData’s Base API

Method Description

appendByte Appends a byte to the receiver.

appendBytes Appends the contents of a byte array to the receiver. The
two-argument version is part of the base API.

bytesNoCopy Returns the internal byte array that contains the receiver’s
data. Inherited from NSData.

immutableBytes Returns an immutable byte array that contains a copy of the
receiver’s data.

immutableRange Returns an immutable copy of the NSRange object that
specifies the receiver’s length.

rangeNoCopy Returns the internal NSRange object that specifies the
receiver’s length. Inherited from NSData.

resetBytesInRange Resets to zero the receiver’s bytes that fall within the specified
range.

setData Replaces the receiver’s contents with the specified NSData
object.

setLength Extends or truncates a mutable data object to the specified
length.

C L A S S N S M u t a b l e D a t a

167

Interfaces Implemented

Cloneable

clone

java.io.Serializable

NSCoding

classForCoder

decodeObject

encodeWithCoder

Method Types

Constructors

NSMutableData

Modifying the data

appendByte

appendBytes

appendData

resetBytesInRange

setData

Modifying the range

increaseLengthBy

setLength

168

C L A S S N S M u t a b l e D a t a

Accessing internal data directly

immutableBytes

immutableRange

Constructors

NSMutableData

public NSMutableData()

Creates an empty NSMutableData object.

public NSMutableData(NSData data)

Creates an NSMutableData object containing the contents of another data object data.

public NSMutableData(String string)

This constructor is deprecated. Use NSMutableData(string.getBytes()) instead.

public NSMutableData(byte[] bytes)

Creates a NSMutableData object with all the data in the byte array bytes.

public NSMutableData(
byte[] bytes,
NSRange range)

Creates an NSMutableData object with the bytes from the language array bytes that fall in the
range specified by range.

public NSMutableData(
byte[] bytes,
NSRange range,
boolean nocopy)

Creates an NSMutableData object with the bytes from the language array bytes that fall in the
range specified by range. The noCopy parameter specifies whether or not a copy of bytes is made.

C L A S S N S M u t a b l e D a t a

169

public NSMutableData(int capacity)

Creates an NSMutableData object prepared to store at least capacity bytes. If you know the upper
bound on the size of your data, you can use this constructor to improve performance. As long as
the data size does not exceed capacity bytes, the internal byte array will not be reallocated.

public NSMutableData(java.io.File file) throws java.io.IOException

This constructor is deprecated. Use NSMutableData(new FileInputStream(file),myChunkSize) instead.

public NSMutableData(
java.io.InputStream inputStream,
int chunkSize) throws java.io.IOException

Creates a data object with the data from the stream specified by inputStream. The chunkSize
parameter specifies the size, in bytes, of the block that the input stream returns when it reads.
For maximum performance, you should set the chunk size to the approximate size of the data.
This constructor does not close the stream.

public NSMutableData(java.net.URL url) throws java.io.IOException

This constructor is deprecated. Use the following code instead:

URLConnection connection = url.openConnection();
connection.connect();
NSMutableData myData = new NSMutableData(connection.getInputStream(),myChunkSize);

Instance Methods

appendByte

public void appendByte(byte byte)

Appends the specified byte to the receiver.

See Also: appendBytes, appendData

170

C L A S S N S M u t a b l e D a t a

appendBytes

public void appendBytes(byte[] bytes[])

public void appendBytes(
byte[] bytes,
NSRange range)

Appends the contents of byte array bytes to the receiver. The two-argument method appends the
bytes in bytes that fall within the range specified by range.

See Also: appendByte, appendData

appendData

public void appendData(NSData otherData)

Appends the contents of a data object otherData to the receiver.

See Also: appendByte, appendBytes

clone

public Object clone()

Returns a copy (an NSMutableData object) of the receiver.

immutableBytes

protected byte[] immutableBytes()

Returns an immutable copy of the byte array that contains the receiver’s data.

immutableRange

protected NSRange immutableRange()

Returns an immutable copy of the NSRange object that contains the receiver’s length.

C L A S S N S M u t a b l e D a t a

171

increaseLengthBy

public void increaseLengthBy(int additionalLength)

Increases the length of the receiver by additionalLength. The additional bytes are all set to zero.

See Also: setLength

resetBytesInRange

public void resetBytesInRange(NSRange range)

Resets to zero the receiver’s bytes that fall within the specified range. If the location of range isn’t
within the receiver’s range of bytes, an IllegalArgumentException is thrown. The receiver is
resized to accommodate the new bytes, if necessary.

setData

public void setData(NSData data)

Replaces the entire contents of the receiver with the contents of data.

See Also: setLength

setLength

public void setLength(int length)

Extends or truncates a mutable data object to the specified length. If the mutable data object is
extended, the additional bytes are filled with zero.

See Also: increaseLengthBy, setData

172

C L A S S N S M u t a b l e D a t a

173

C L A S S

NSMutableDictionary

Inherits from: NSDictionary : Object

Implements: Cloneable
java.io.Serializable
NSCoding
NSKeyValueCoding
NSKeyValueCodingAdditions

Package: com.webobjects.foundation

Class Description

The NSMutableDictionary class declares the programmatic interface to objects that manage
mutable associations of keys and values. This class adds modification operations to the basic
operations it inherits from NSDictionary.

Methods that add entries to NSMutableDictionaries—whether during construction or
modification—add each value object to the dictionary directly. These methods also add each key
object directly to the dictionary, which means that you must ensure that the keys do not change.
If you expect your keys to change for any reason, you should make copies of the keys and add
the copies to the dictionary.

174

C L A S S N S M u t a b l e D i c t i o n a r y

Table 0-9 describes the NSMutableDictionary methods that provide the basis for all
NSMutableDictionary’s other methods; that is, all other methods are implemented in terms of
these seven. If you create a subclass of NSMutableDictionary, you need only ensure that these
base methods work properly. Having done so, you can be sure that all your subclass's inherited
methods operate properly.

The other methods declared here provide convenient ways of adding or removing multiple
entries at a time.

Table 0-9 NSMutableDictionary’s Base API

Method Description

count Returns the number of entries in the dictionary. Inherited from
NSDictionary.

objectForKey Returns the value associated with a given key. Inherited from
NSDictionary.

keysNoCopy Returns a natural language array containing the keys in the
dictionary. Inherited from NSDictionary.

objectsNoCopy Returns a natural language array containing the objects in the
dictionary. Inherited from NSDictionary.

removeAllObjects Empties the dictionary of its entries.

removeObjectForKey Removes the specified key object and its associated value
object from the dictionary.

setObjectForKey Adds or replaces an entry to the receiver consisting of the
specified key and value objects.

C L A S S N S M u t a b l e D i c t i o n a r y

175

Interfaces Implemented

Cloneable

clone

java.io.Serializable

NSCoding

classForCoder

decodeObject

encodeWithCoder

NSKeyValueCoding

takeValueForKey

valueForKey

NSKeyValueCodingAdditions

takeValueForKeyPath

valueForKeyPath

Method Types

Constructors

NSMutableDictionary

Adding and removing entries

addEntriesFromDictionary

176

C L A S S N S M u t a b l e D i c t i o n a r y

removeAllObjects

removeObjectForKey

removeObjectsForKeys

setDictionary

setObjectForKey

Copying the dictionary

immutableClone

Methods inherited from Object

clone

Constructors

NSMutableDictionary

public NSMutableDictionary()

Creates an empty NSMutableDictionary.

public NSMutableDictionary(int capacity)

Creates an empty NSMutableDictionary prepared to hold at least capacity entries.

public NSMutableDictionary(
NSArray objectArray,
NSArray keyArray)

Creates an NSMutableDictionary with entries from the contents of the keyArray and objectArray
NSArrays. This method steps through objectArray and keyArray, creating entries in the new
dictionary as it goes. Each key object and its corresponding value object is added directly to the
dictionary. An InvalidArgumentException is thrown if the objectArray and keyArray do not have
the same number of elements.

Note: NSMutableDictionary assumes that key objects are immutable. If your key objects are
mutable, you should make copies of them and add the copies to the dictionary.

C L A S S N S M u t a b l e D i c t i o n a r y

177

public NSMutableDictionary(NSDictionary dictionary)

Creates an NSMutableDictionary containing the keys and values found in dictionary.

public NSMutableDictionary(
Object object,
Object key)

Creates an NSMutableDictionary containing a single object object for a single key key.

public NSMutableDictionary(
Object[] objects,
Object[] keys)

Creates an NSMutableDictionary with entries from the contents of the keys and objects arrays.
This method steps through objects and keys, creating entries in the new dictionary as it goes. Each
key object and its corresponding value object is added directly to the dictionary. An
InvalidArgumentException is thrown if the objects and keys do not have the same number of
elements.

public NSMutableDictionary(
java.util.Dictionary dictionary,
boolean ignoreNull)

Creates an NSMutableDictionary containing the keys and values found in dictionary. If ignoreNull
is false, throws an InvalidArgumentException if any key or value in dictionary is null.

Note: NSMutableDictionary assumes that key objects are immutable. If your key objects are
mutable, you should make copies of them and add the copies to the dictionary.

Note: NSMutableDictionary assumes that key objects are immutable. If your key objects are
mutable, you should make copies of them and add the copies to the dictionary.

178

C L A S S N S M u t a b l e D i c t i o n a r y

Instance Methods

addEntriesFromDictionary

public void addEntriesFromDictionary(NSDictionary otherDictionary)

Adds the entries from otherDictionary to the receiver.

See Also: setObjectForKey

clone

public Object clone()

Returns a copy (a NSMutableDictionary object) of the receiver.

immutableClone

public NSDictionary immutableClone()

Returns an immutable copy (an NSDictionary object) of the receiver.

mutableClone

public NSMutableArray mutableClone()

Description forthcoming.

removeAllObjects

public void removeAllObjects()

Empties the dictionary of its entries.

See Also: removeObjectForKey, removeObjectsForKeys

C L A S S N S M u t a b l e D i c t i o n a r y

179

removeObjectForKey

public Object removeObjectForKey(Object key)

Removes the dictionary entry identified by key and returns the entry’s value object. If no entry
identified by key exists, this method returns null.

See Also: removeObjectsForKeys, removeAllObjects

removeObjectsForKeys

public void removeObjectsForKeys(NSArray keyArray)

Removes one or more objects from the receiver. The entries are identified by the keys in keyArray.
This method does not raise if the receiver does not contain entries for one or more of the keys.

See Also: removeObjectForKey, removeAllObjects

setDictionary

public void setDictionary(NSDictionary otherDictionary)

Sets the receiver to entries in otherDictionary. This method removes all entries from the receiver
(with removeAllObjects) and adds each entry from otherDictionary into the receiver.

setObjectForKey

public void setObjectForKey(
Object anObject,
Object aKey)

Adds or replaces an entry to the receiver consisting of aKey and its corresponding value object
anObject. Throws an InvalidArgumentException if the key or value object is null.

See Also: removeObjectForKey

Note: NSMutableDictionary assumes that key objects are immutable. If your key objects are
mutable, you should make copies of them and add the copies to the dictionary.

180

C L A S S N S M u t a b l e D i c t i o n a r y

takeValueForKey

public void takeValueForKey(
Object value,
String key)

Conformance to NSKeyValueCoding. Invokes setObjectForKey with the specified parameters if
value is not null. Otherwise invokes removeObjectForKey for the specified key.

Note: NSMutableDictionary assumes that key objects are immutable. If your key objects are
mutable, you should make copies of them and add the copies to the dictionary.

181

C L A S S

NSMutableRange

Inherits from: NSRange : Object

Implements: Cloneable

Package: com.webobjects.foundation

Class Description

An NSMutableRange is an object representing a range that can be changed. A range is a
measurement of a segment of something linear, such as a byte stream. You can change an
NSMutableRange’s two primary values, its location and its length. The methods of
NSMutableRange also enable you to alter an NSMutableRange based on its union or intersection
with another NSRange object.

The main purpose for NSMutableRange is to provide a way for methods to return range values
in an “out” parameter. A client creates and passes in one or more NSMutableRanges to a method
and gets back changed objects when the method returns. NSMutableRanges are also useful for
performance reasons; instead of creating multiple NSRanges in a loop, you can create just one
NSMutableRange and reuse it.

182

C L A S S N S M u t a b l e R a n g e

Table 0-10 describes the NSMutableRange methods that provide the basis for all
NSMutableRange’s other methods; that is, all other methods are implemented in terms of these
four. If you create a subclass of NSMutableRange, you need only ensure that these base methods
work properly. Having done so, you can be sure that all your subclass's inherited methods
operate properly.

Interfaces Implemented

Cloneable

clone

Method Types

Constructors

NSMutableRange

Accessing and setting range elements

setLength

Table 0-10 NSMutableRange’s Base API

Method Description

location Returns the starting location of the receiver. Inherited from
NSRange.

length Returns the length of the receiver from its starting location.
Inherited from NSRange.

setLength Sets the length of the receiver.

setLocation Sets the starting location of the receiver.

C L A S S N S M u t a b l e R a n g e

183

setLocation

Transforming ranges

intersectRange

unionRange

Methods inherited from Object

clone

Constructors

NSMutableRange

public NSMutableRange()

Creates and returns an empty NSMutableRange.

public NSMutableRange(NSRange aRange)

Creates a new NSMutableRange with the location and length values of aRange. This constructor
is used in cloning the receiver.

public NSMutableRange(
int location,
int length)

Creates a new NSMutableRange with the range elements of location and length. Throws an
IllegalArgumentException if either integer is negative.

184

C L A S S N S M u t a b l e R a n g e

Instance Methods

clone

public Object clone()

Returns a copy (a NSMutableRange object) of the receiver.

intersectRange

public void intersectRange(NSRange aRange)

Changes the receiver to the range resulting from the intersection of aRange and the receiver
before the operation. Sets the receiver to an empty range if they do not intersect.

See Also: unionRange

setLength

public void setLength(int newLength)

Sets the length of the receiver to newLength. Throws an IllegalArgumentException if newLength is
a negative value.

See Also: setLocation

setLocation

public void setLocation(int newLocation)

Sets the starting location of the receiver to newLocation. Throws an IllegalArgumentException if
newLocation is a negative value.

See Also: setLength

C L A S S N S M u t a b l e R a n g e

185

unionRange

public void unionRange(NSRange aRange)

Changes the receiver to the range resulting from the union of aRange and the receiver before the
operation. This is the lowest starting location and the highest ending location of the two
NSRanges.

See Also: intersectRange

186

C L A S S N S M u t a b l e R a n g e

187

C L A S S

NSMutableSet

Inherits from: NSSet : Object

Implements: Cloneable
java.io.Serializable
NSCoding

Package: com.webobjects.foundation

Class Description

The NSMutableSet class declares the programmatic interface to an object that manages a
mutable set of objects. NSMutableSet provides support for the mathematical concept of a set. A
set, both in its mathematical sense, and in the NSMutableSet implementation, is an unordered
collection of distinct elements. The NSSet class supports creating and managing immutable sets.

188

C L A S S N S M u t a b l e S e t

Table 0-11 describes the NSMutableSet methods that provide the basis for all NSMutableSet’s
other methods; that is, all other methods are implemented in terms of these five. If you create a
subclass of NSMutableSet, you need only ensure that these base methods work properly. Having
done so, you can be sure that all your subclass's inherited methods operate properly.

Objects are removed from an NSMutableSet using any of the methods intersectSet,
removeAllObjects, removeObject, or subtractSet.

Objects are added to an NSMutableSet with addObject, which adds a single object to the set;
addObjectsFromArray, which adds all objects from a specified array to the set; or with unionSet, which
adds all the objects from another set.

Methods that add entries to NSMutableSets—whether during construction or modification—
add each member to the set directly. This means that you must ensure that the members do not
change. If you expect your members to change for any reason, you should make copies of them
and add the copies to the set.

Table 0-11 NSMutableSet’s Base API

Method Description

count Returns the number of members in the set.

member Returns the object in the set that is equal to the specified
object.

objectsNoCopy Returns the actual array of objects in the set.

removeAllObjects Empties the set of all its members.

removeObject Removes the specified object from the set.

C L A S S N S M u t a b l e S e t

189

Interfaces Implemented

Cloneable

clone

java.io.Serializable

NSCoding

classForCoder

decodeObject

encodeWithCoder

Method Types

Constructors

NSMutableSet

Adding and removing entries

addObject

addObjectsFromArray

removeAllObjects

removeObject

Combining and recombining sets

intersectSet

setSet

subtractSet

190

C L A S S N S M u t a b l e S e t

unionSet

Copying the set

immutableClone

Constructors

NSMutableSet

public NSMutableSet()

Creates an empty NSMutableSet.

public NSMutableSet(NSArray anArray)

Creates an NSMutableSet containing the objects in anArray.

public NSMutableSet(NSSet aSet)

Creates an NSMutableSet containing the objects in aSet.

public NSMutableSet(Object anObject)

Creates an NSMutableSet containing a single object anObject.

public NSMutableSet(Object[] objects[])

Creates an NSMutableSet containing the objects in the objects language array.

Note: NSMutableSet assumes that member objects are immutable. If your member objects are
mutable, you should make copies of them and add the copies to the set.

Note: NSMutableSet assumes that member objects are immutable. If your member objects are
mutable, you should make copies of them and add the copies to the set.

Note: NSMutableSet assumes that member objects are immutable. If your member objects are
mutable, you should make copies of them and add the copies to the set.

C L A S S N S M u t a b l e S e t

191

public NSMutableSet(int capacity)

Creates an NSMutableSet that can hold at least capacity objects.

Instance Methods

addObject

public void addObject(Object anObject)

Adds the specified object to the receiver if it is not already a member. If anObject is already present
in the set, this method has no effect on either the set or on anObject.

See Also: addObjectsFromArray, unionSet

addObjectsFromArray

public void addObjectsFromArray(NSArray anArray)

Adds each object contained in anArray to the receiver, if that object is not already a member. If a
given element of the array is already present in the set, this method has no effect on either the
set or on the array element.

See Also: addObject, unionSet

Note: NSMutableSet assumes that member objects are immutable. If your member objects are
mutable, you should make copies of them and add the copies to the set.

Note: NSMutableSet assumes that member objects are immutable. If your member objects are
mutable, you should make copies of them and add the copies to the set.

192

C L A S S N S M u t a b l e S e t

clone

public Object clone()

Creates a clone of the receiver. NSMutableSet’s implementation simply creates a new
NSMutableSet with the objects in the receiver.

immutableClone

public NSSet immutableClone()

Creates an immutable copy (a NSSet) of the receiver.

intersectSet

public void intersectSet(NSSet otherSet)

Removes from the receiver each object that isn’t a member of otherSet.

See Also: removeObject, removeAllObjects, subtractSet

mutableClone

public NSMutableArray mutableClone()

Description forthcoming.

removeAllObjects

public void removeAllObjects()

Empties the set of all its members.

See Also: removeObject, intersectSet, subtractSet

C L A S S N S M u t a b l e S e t

193

removeObject

public void removeObject(Object anObject)

Removes anObject from the set.

See Also: removeAllObjects, intersectSet, subtractSet

setSet

public void setSet(NSSet otherSet)

Empties the receiver, then adds each object contained in otherSet to the receiver.

subtractSet

public void subtractSet(NSSet otherSet)

Removes from the receiver each object contained in otherSet that is also present in the receiver. If
any member of otherSet isn’t present in the receiving set, this method has no effect on either the
receiver or on the otherSet member.

See Also: removeObject, removeAllObjects, intersectSet

unionSet

public void unionSet(NSSet otherSet)

Adds each object contained in otherSet to the receiver, if that object is not already a member. If
any member of otherSet is already present in the receiver, this method has no effect on either the
receiver or on the otherSet member.

See Also: addObject, addObjectsFromArray

194

C L A S S N S M u t a b l e S e t

195

C L A S S

NSNotification

Inherits from: Object

Implements: NSCoding
java.io.Serializable

Package: com.webobjects.foundation

Class Description

NSNotification objects encapsulate information so that it can be broadcast to other objects by an
NSNotificationCenter object.

Notifications and their Rationale
The standard way to pass information between objects is message passing—one object invokes
the method of another object. However, message passing requires that the object sending the
message know who the receiver is and what messages it responds to. At times, this tight
coupling of two objects is undesirable—most notably because it would join together two
otherwise independent subsystems. For these cases, a broadcast model is introduced: An object
posts a notification, which is dispatched to the appropriate observers through an
NSNotificationCenter object, or simply notification center.

An NSNotification object (referred to as a notification) contains a name, an object, and a
dictionary. The name is a tag identifying the notification. The object is any object that the poster
of the notification wants to send to observers of that notification (typically, it is the object that
posted the notification). The dictionary stores other related objects if any.

196

C L A S S N S N o t i fi c a t i o n

Any object may post a notification. Other objects can register themselves as observers to receive
notifications when they are posted. The object posting the notification, the object included in the
notification, and the observer of the notification may all be different objects or the same object.
Objects that post notifications need not know anything about the observers. On the other hand,
observers need to know at least the notification name and keys to the dictionary if provided.

NSNotification objects are immutable objects.

Notification Centers
The notification center manages the sending and receiving of notifications. When an object
wants to receive a certain notification, it registers itself with the notification center. When an
object has a notification to send, it sends it to the notification center. When the notification center
receives a notification, it passes that notification along to all objects registered to receive it. (See
the NSNotificationCenter class specification for more on posting notifications.)

This notification model frees an object from concern about what objects it should send
information to. Any object may simply post a notification without knowing what objects—if
any—are receiving the notification. However, objects receiving notifications do need to know at
least the notification name if not the type of information the notification contains. The
notification center takes care of broadcasting notifications to registered observers. Another
benefit of this model is to allow multiple objects to listen for notifications, which would
otherwise be cumbersome.

You can create a notification object with the constructor. However, you don’t usually create your
own notifications directly. The NSNotificationCenter method postNotification allows you to
conveniently post a notification without creating it first.

Notification and Delegation
Using the notification system is similar to using delegates, but it has these advantages:

■ Any number of objects may receive the notification, not just the delegate object. This
precludes returning a value.

■ An object may receive any message you like from the notification center, not just the
predefined delegate methods.

■ The object posting the notification does not even have to know the observer exists.

C L A S S N S N o t i fi c a t i o n

197

Creating Subclasses
You can subclass NSNotification to contain information in addition to the notification name,
object, and dictionary. This extra data must be agreed upon between notifiers and observers.

Interfaces Implemented

NSCoding

classForCoder

encodeWithCoder

Method Types

Constructors

NSNotification

Obtaining information about a notification

name

object

userInfo

Methods inherited from Object

equals

hashCode

toString

Decoding the notification

decodeObject

198

C L A S S N S N o t i fi c a t i o n

Constructors

NSNotification

public NSNotification(
String aName,
Object anObject)

Creates a notification object that associates the name aName with the object anObject and contains
an empty userInfo dictionary. The aName parameter may not be null.

public NSNotification(
String aName,
Object anObject,
NSDictionary userInfo)

Returns a notification object that associates the name aName with the object anObject and the
dictionary of arbitrary data userInfo. The dictionary userInfo may be null; if so, the new
notification contains an empty userInfo dictionary. aName may not be null.

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Creates an NSNotification from the data in coder.

See Also: NSCoding

C L A S S N S N o t i fi c a t i o n

199

Instance Methods

classForCoder

public Class classForCoder()

Conformance with NSCoding. See the method description of classForCoder in the interface
specification for NSCoding.

encodeWithCoder

public void encodeWithCoder(NSCoder aNSCoder)

Conformance with NSCoding. See the method description of encodeWithCoder in the interface
specification for NSCoding.

equals

public boolean equals(Object anObject)

Compares the receiving NSNotification object to anObject. If anObject is an NSNotification and
the contents of anObject are equal to the contents of the receiver, this method returns true. If not,
it returns false. Two notifications are equal if their names, objects, and dictionaries are equal.

See Also: name, object, userInfo

hashCode

public int hashCode()

Provide an appropriate hash code useful for storing the receiver in a hash-based data structure.

200

C L A S S N S N o t i fi c a t i o n

name

public String name()

Returns the name of the notification. Examples of this might be “PortIsInvalid”. Typically, you
invoke this method on the notification object passed to your notification-handler method. (You
specify a notification-handler method when you register to receive the notification.)

Notification names can be any string. To avoid name collisions, however, you might want to use
a prefix that’s specific to your application.

object

public Object object()

Returns the object associated with the notification. This is often the object that posted this
notification. It may be null.

Typically, you invoke this method on the notification object passed in to your
notification-handler method. (You specify a notification-handler method when you register to
receive the notification.)

toString

public String toString()

Returns a string representation of the receiver including its name, object, and dictionary.

userInfo

public NSDictionary userInfo()

Returns the NSDictionary associated with the notification. The NSDictionary stores any
additional objects that objects receiving the notification might use. For example a PortIsInvalid
notification may provide the port number in the dictionary. The NSDictionary is empty if no
userInfo dictionary was specified when the notification was created.

201

C L A S S

NSNotificationCenter

Inherits from: Object

Package: com.webobjects.foundation

Class Description

An NSNotificationCenter object (or simply, notification center) is essentially a notification
dispatch table. It notifies all observers of notifications meeting specific criteria. This information
is encapsulated in NSNotification objects, also known as notifications. Client objects register
themselves as observers of specific notifications posted by other objects. When an event occurs,
an object posts an appropriate notification to the notification center. (See the NSNotification
class specification for more on notifications.) The notification center dispatches a message to
each registered observer, passing the notification as the sole argument. It is possible for the
posting object and the observing object to be the same.

Each task has a default notification center that you access with the defaultCenter static method.

NSNotificationCenter is implemented using weak references (see Sun’s documentation for
java.lang.ref.* for details). Thus, if the default NSNotificationCenter is the last object in your
application with a reference to either an object registered to receive notifications or an object
being observed, the object will be garbage collected.

Registering to Receive Notifications
There are two ways to register to receive notifications.

202

C L A S S N S N o t i fi c a t i o n C e n t e r

If an object wishes to register itself to receive all notifications from all objects, it should send the
addOmniscientObserver method, specifying the message the notification should send.

Otherwise, an object registers itself to receive a notification by sending the addObserver method,
specifying the message the notification should send, the name of the notification it wants to
receive, and about which object. However, the observer need not specify both the name and the
object. If it specifies only the object, it will receive all notifications containing that object. If the
object specifies only a notification name, it will receive that notification every time it’s posted,
regardless of the object associated with it.

It is possible for an observer to register to receive more than one message for the same
notification. In such a case, the observer will receive all messages it is registered to receive for
the notification, but the order in which it receives them cannot be determined.

Method Types

Constructors

NSNotificationCenter

Accessing the default center

defaultCenter

Adding and removing observers

addObserver

addOmniscientObserver

removeObserver

removeOmniscientObserver

Posting notifications

postNotification

C L A S S N S N o t i fi c a t i o n C e n t e r

203

Constructors

NSNotificationCenter

protected NSNotificationCenter()

Standard no-arg constructor. For use by subclasses only.

Static Methods

defaultCenter

public static NSNotificationCenter defaultCenter()

Returns the current task’s notification center, which is used for system notifications.

204

C L A S S N S N o t i fi c a t i o n C e n t e r

Instance Methods

addObserver

public synchronized void addObserver(
Object anObserver,
NSSelector aSelector,
String notificationName,
Object anObject)

Registers anObserver to receive notifications with the name notificationName and/or containing
anObject. When a notification of name notificationName containing the object anObject is posted,
anObserver receives an aSelector message with this notification as the argument. The method for
the selector specified in aSelector must have one and only one argument. anObject or
notificationName can be null, but not both:

addOmniscientObserver

public synchronized void addOmniscientObserver(
Object anObserver,
NSSelector aSelector)

Registers anObserver to receive all notifications from all objects. When a notification is posted,
anObserver receives an aSelector message with this notification as the argument. The method for
the selector specified in aSelector must have exactly one argument.

Omniscient observers can significantly degrade performance and should be used with care.

anObject notificationName Action

null notificationName The notification center notifies the observer of all notifications
with the name notificationName.

anObject null The notification center notifies the observer of all notifications
with an object matching anObject.

null null Do not invoke this method specifying null for both
notificationName and anObject. Instead, use addOmniscientObserver.

C L A S S N S N o t i fi c a t i o n C e n t e r

205

postNotification

public void postNotification(
String notificationName,
Object anObject,
NSDictionary userInfo)

Creates a notification with the name notificationName, associates it with the object anObject and
dictionary userInfo, and posts it to the notification center.

This method is the preferred method for posting notifications. anObject is typically the object
posting the notification. It may be null. userInfo also may be null.

public void postNotification(
String notificationName,
Object anObject)

Creates a notification with the name notificationName, associates it with the object anObject, and
posts it to the notification center. anObject is typically the object posting the notification. It may be
null.

public void postNotification(NSNotification notification)

Posts notification to the notification center. You can create notification with the NSNotification
constructor.

removeObserver

public void removeObserver(Object anObserver)

Same as removeObserver(anObserver, null, null).

206

C L A S S N S N o t i fi c a t i o n C e n t e r

public synchronized void removeObserver(
Object anObserver,
String notificationName,
Object anObject)

Removes anObserver as the observer of notifications with the name notificationName and object
anObject from the notification center. This method interprets null parameters as wildcards:

Recall that the object a notification contains is usually the object that posted the notification.

removeOmniscientObserver

public synchronized void removeOmniscientObserver(Object anObserver)

Unregisters anObserver as an observer of all notifications.

toString

public String toString()

Returns a String representation of the receiver.

removeObserver Parameters Action

null, notificationName, anObject Removes all observers of notificationName containing anObject.

anObserver, null, anObject Removes anObserver as an observer of all notifications containing
anObject.

anObserver, notificationName, null Removes anObserver as an observer of notificationName containing
any object.

anObserver, null, null Removes all notifications containing anObserver.

null, notificationName, null Removes all observers of notificationName.

null, null, anObject Removes all observers of anObject.

207

C L A S S

NSNumberFormatter

Inherits from: java.text.Format : Object

Package: com.webobjects.foundation

Class Description

Instances of NSNumberFormatter convert between BigDecimal numbers and textual
representations of numeric values. The representation encompasses integers and floating-point
numbers; floating-point numbers can be formatted to a specified decimal position.
NSNumberFormatters can also impose ranges on the numeric values that can be formatted.

You can associate a number pattern with a WOString or WOTextField dynamic element.
WebObjects uses an NSNumberFormatter object to perform the appropriate conversions.

Instances of NSNumberFormatter are mutable.

Creating an Instance of NSNumberFormatter
The most common technique for creating a NSNumberFormatter is to use the one-argument
constructor, which takes as its argument a string whose contents can be one of the following:

■ "positivePattern"

For example, "$###,##0.00" (the syntax of format strings is discussed in the following section).

■ "positivePattern;negativePattern"

208

C L A S S N S N u m b e r F o r m a t t e r

For example, "###,##0.00;(###,##0.00)".

■ "positivePattern;zeroPattern;negativePattern"

For example, "$###,###.00;0.00;($###,##0.00)". Note that zero patterns are treated as string
constants.

As implied in the above list, you’re only required to specify a pattern for positive values. If you
don’t specify a pattern for negative and zero values, a default pattern based on the positive value
pattern is used. For example, if your positive value pattern is "#,##0.00", an input value of "0" will
be displayed as "0.00".

If you don’t specify a pattern for negative values, the pattern specified for positive values is used,
preceded by a minus sign (-).

If you specify a separate pattern for negative values, its separators should be parallel to those
specified in the positive pattern string. In NSNumberFormatter, separators are either enabled or
disabled for all patterns—both your negative and positive patterns should therefore use the
same approach.

As an alternative to using the one-argument constructor is to use the no-argument constructor
and invoking setPattern with the pattern. You can also use the setPositivePattern and
setNegativePattern methods.

Pattern String Syntax

Pattern strings can include the following types of characters:

■ Numbers

Pattern strings can include numeric characters. Wherever you include a number in a pattern
string, the number is displayed unless an input character in the same relative position
overwrites it. For example, suppose you have the positive pattern string "9,990.00", and the
value 53.88 is entered into a cell to which the pattern has been applied. The cell would display
the value as 9,953.88.

■ Separators

Pattern strings can include the period character (.) as a decimal separator, and comma
character (,) as a thousand separator. If you want to use different characters as separators,
you can set them using the setDecimalSeparator and setThousandSeparator methods.

■ Placeholders

C L A S S N S N u m b e r F o r m a t t e r

209

You use the pound sign character (#) to represent numeric characters that will be input by the
user. For example, suppose you have the positive pattern "$#,##0.00". If the characters 76329
were entered into a cell to which the pattern has been applied, they would be displayed as
$76,329.00. Strictly speaking, however, you don’t need to use placeholders. The format
strings ",0.00", "#,#0.00", and "#,##0.00" are functionally equivalent. In other words, including
separator characters in a pattern string signals NSNumberFormatter to use the separators,
regardless of whether you use (or where you put) placeholders. The placeholder character’s
chief virtue lies in its ability to make pattern strings more human-readable, which is
especially useful if you’re displaying patterns in the user interface.

■ Spaces

To include a space in a pattern string, use the underscore character (_). This character inserts
a space if no numeric character has been input to occupy that position.

■ Currency

The dollar sign character ($) is normally treated just like any other character that doesn’t play
a special role in NSNumberFormatter.

All other characters specified in a pattern string are displayed as typed. The following table
shows examples of the how the value 1019.55 is displayed for different positive patterns:

Using Separators
NSNumberFormatter supports two different kinds of separators: thousand and decimal. By
default these separators are represented by the comma (,) and period (.) characters respectively.
The default pattern (“#,##0.##”) enables them.

All of the following statements have the effect of enabling thousand separators:

// use setPattern:
numberFormatter.setPattern("#,###");

// use setHasThousandSeparators:
numberFormatter.setHasThousandSeparators(true);

Pattern String Display

"#,##0.00" 1,019.55

"$#,##0.00" $1,019.55

"___,__0.00" 1,019.55

210

C L A S S N S N u m b e r F o r m a t t e r

// use setThousandSeparator:
numberFormatter.setThousandSeparator("_");

If you use the statement numberFormatter.setHasThousandSeparators(false), it disables thousand
separators, even if you’ve set them through another means.

Both of the following statements have the effect of enabling decimal separators:

// use setFormat:
numberFormatter.setFormat("0.00");

// use setDecimalSeparator:
numberFormatter.setDecimalSeparator("-");

When you enable or disable separators, it affects both positive and negative patterns.
Consequently, both patterns must use the same separator scheme.

You can use the thousandSeparator and decimalSeparator methods to return a string containing the
character the receiver uses to represent each separator. However, this shouldn’t be taken as an
indication of whether separators are enabled—even when separators are disabled, an
NSNumberFormatter still knows the characters it uses to represent separators.

Separators must be single characters. If you specify multiple characters in the arguments to
setThousandSeparator and setDecimalSeparator, only the first character is used.

You can’t use the same character to represent thousand and decimal separators.

Localization
NSNumberFormatter provides methods to localize pattern strings. You can change the currency
symbol, the decimal separator, and the thousands separator manually, or you can trust
NSNumberFormatter to do it for you, based on locales. If you enable localization for an instance
of NSNumberFormatter, it will check the current locale and localize pattern strings
appropriately for that locale. By default, instances of NSNumberFormatter are not localized. You
can enable localization for all new instances of NSNumberFormatter using
setDefaultLocalizesPattern or for a specific instance of NSNumberFormatter using
setLocalizesPattern. See the method descriptions for setDefaultLocalizesPattern and
setLocalizesPattern for more information.

C L A S S N S N u m b e r F o r m a t t e r

211

Constants

NSNumberFormatter provides the following constants for specifying rounding modes and
special numbers.The rounding mode specifiers are used with roundingBehavior and
setRoundingBehavior.

Method Types

Constructors

NSNumberFormatter

Performing formatted conversions

objectValueForString

stringForObjectValue

Methods inherited from java.text.Format

format

Constant Type Description

RoundDown int Rounding mode specifier: round towards
negative infinity

RoundUp int Rounding mode specifier: round towards
positive infinity

RoundPlain int Rounding mode specifier: round to nearest up

RoundBankers int Rounding mode specifier: round to nearest even

NSDecimalNotANumber java.math.BigDecimal Definition of Not A Number (NaN)

DefaultPattern String Default format for pattern strings: "#,##0.##”.

212

C L A S S N S N u m b e r F o r m a t t e r

parseObject

Accessing patterns

negativePattern

pattern

positivePattern

setNegativePattern

setPattern

setPositivePattern

Accessing floating point settings

allowsFloats

roundingBehavior

setAllowsFloats

setRoundingBehavior

Accessing decimal separator settings

decimalSeparator

setDecimalSeparator

Accessing thousand separator settings

hasThousandSeparators

setHasThousandSeparators

setThousandSeparator

thousandSeparator

Accessing strings for special numbers

setStringForNotANumber

setStringForNull

setStringForZero

stringForNotANumber

stringForNull

C L A S S N S N u m b e r F o r m a t t e r

213

stringForZero

Limiting the input number

maximum

minimum

setMaximum

setMinimum

Localization Methods

availableLocales

currencySymbol

defaultLocale

defaultLocalizesPattern

locale

localizesPattern

setCurrencySymbol

setDefaultLocale

setDefaultLocalizesPattern

setLocale

setLocalizesPattern

Deprecated Methods

attributedStringForNil

attributedStringForNotANumber

attributedStringForZero

format

localizesFormat

negativeFormat

positiveFormat

setAttributedStringForNil

214

C L A S S N S N u m b e r F o r m a t t e r

setAttributedStringForNotANumber

setAttributedStringForZero

setFormat

setLocalizesFormat

setNegativeFormat

setPositiveFormat

Constructors

NSNumberFormatter

public NSNumberFormatter()

Creates an NSNumberFormatter and sets its pattern to the default pattern: “#,##0.##”.

public NSNumberFormatter(String pattern)

Creates an NSFormatter and sets its pattern to pattern. If pattern is illegal, the constructor throws
an IllegalArgumentException. See “Pattern String Syntax” (page 208) for an explanation of what
makes a pattern legal.

See Also: setPattern

Static Methods

availableLocales

public static java.util.Locale[] availableLocales()

Returns a list of all installed locales.

C L A S S N S N u m b e r F o r m a t t e r

215

defaultLocale

public static java.util.Locale defaultLocale()

Returns the default locale for all instances of NSNumberFormatter.

defaultLocalizesPattern

public static boolean defaultLocalizesPattern()

Returns true to indicate that the receiver’s format will be localized for all new instances of
NSNumberFormatter in your application. By default, patterns are not localized.

See Also: setDefaultLocalizesPattern

setDefaultLocale

public static void setDefaultLocale(Locale newLocale)

Sets according to newLocale the default locale of the receiver. Throws an
IllegalArgumentException if newLocale is null.

setDefaultLocalizesPattern

public static void setDefaultLocalizesPattern(boolean newDefault)

Sets according to newDefault whether all new NSNumberFormatter objects in your application
created after this method is invoked are set to be localized by NSNumberFormatter based on the
locale. NSNumberFormatter will choose the appropriate currency symbol, decimal separator,
thousands separator, string for zero, and string for not a number based on locale if newDefault is
true. By default, NSNumberFormatters are not localized.

See Also: defaultLocalizesPattern

216

C L A S S N S N u m b e r F o r m a t t e r

Instance Methods

allowsFloats

public boolean allowsFloats()

Returns true if the receiver allows as input floating point values (that is, values that include the
period character (.)), false otherwise. When this is set to false, only integer values can be
provided as input. The default is true.

attributedStringForNil

public String attributedStringForNil()

Deprecated in the Java Foundation framework. Don’t use this method. Use stringForNull instead.

attributedStringForNotANumber

public String attributedStringForNotANumber()

Deprecated in the Java Foundation framework. Don’t use this method. Use stringForNotANumber
instead.

attributedStringForZero

public String attributedStringForZero()

Deprecated in the Java Foundation framework. Don’t use this method. Use stringForZero instead.

currencySymbol

public String currencySymbol()

Returns a string representing the symbol the receiver uses to represent currency.

See Also: setCurrencySymbol

C L A S S N S N u m b e r F o r m a t t e r

217

decimalSeparator

public String decimalSeparator()

Returns a string containing the character the receiver uses to represent decimal separators. By
default this is the period character (.).

format

public StringBuffer format(
Object object,
StringBuffer toAppendTo,
java.text.FieldPosition position)

Formats object to produce a string, appends the string to toAppendTo, and returns the resulting
StringBuffer. The position parameter specifies an alignment field to place the formatted object.
When the method returns, this parameter contains the position of the alignment field. See Sun’s
java.text.Format documentation for more information.

See Also: stringForObjectValue

format

public String format()

Deprecated in the Java Foundation framework. Don’t use this method. Use pattern instead.

hasThousandSeparators

public boolean hasThousandSeparators()

Returns true to indicate that the receiver’s format includes thousand separators, false otherwise.
The default is false.

locale

public java.util.Locale locale()

Returns the current locale.

218

C L A S S N S N u m b e r F o r m a t t e r

localizesFormat

public boolean localizesFormat()

Deprecated in the Java Foundation framework. Don’t use this method. Use localizesPattern
instead.

localizesPattern

public boolean localizesPattern()

Returns true to indicate that the receiver’s format will be localized for a specific instance of
NSNumberFormatter. By default, instances of NSNumberFormatter are not localized.

maximum

public java.math.BigDecimal maximum()

Returns the highest number allowed as input by the receiver.

minimum

public java.math.BigDecimal minimum()

Returns the lowest number allowed as input by the receiver.

negativeFormat

public String negativeFormat()

Deprecated in the Java Foundation framework. Don’t use this method. Use negativePattern
instead.

C L A S S N S N u m b e r F o r m a t t e r

219

negativePattern

public String negativePattern()

Returns a string containing the pattern the receiver uses to display negative numbers.

See Also: positivePattern, setPattern

objectValueForString

public Object objectValueForString(String inString)
throws java.text.ParseException

Returns a number (a java.math.BigDecimal object) by parsing inString according to the receiver’s
pattern. Throws a ParseException if the conversion fails for any reason.

See Also: setPattern

parseObject

public Object parseObject(
String source,
java.text.ParsePosition status)

public Object parseObject(String source) throws java.text.ParseException

Parses a string to produce an object. See Sun’s java.text.Format documentation for more
information.

See Also: objectValueForString

pattern

public String pattern()

Returns a string containing the pattern the receiver uses to format numbers.

See Also: setPattern

220

C L A S S N S N u m b e r F o r m a t t e r

positiveFormat

public String positiveFormat()

Deprecated in the Java Foundation framework. Don’t use this method. Use positivePattern
instead.

positivePattern

public String positivePattern()

Returns a string containing the pattern the receiver uses to format positive numbers.

See Also: setPattern, setNegativePattern

roundingBehavior

public int roundingBehavior()

Returns an integer indicating the rounding behavior used by the receiver.

setAllowsFloats

public void setAllowsFloats(boolean flag)

Sets according to flag whether the receiver allows as input floating point values (that is, values
that include the period character (.)). By default, floating point values are allowed as input.

setAttributedStringForNil

public void setAttributedStringForNil(String string)

Deprecated in the Java Foundation framework. Don’t use this method. Use setStringForNull
instead.

C L A S S N S N u m b e r F o r m a t t e r

221

setAttributedStringForNotANumber

public void setAttributedStringForNotANumber(String string)

Deprecated in the Java Foundation framework. Don’t use this method. Use setStringForNotANumber
instead.

setAttributedStringForZero

public void setAttributedStringForZero(String string)

Deprecated in the Java Foundation framework. Don’t use this method. Use setStringForZero
instead.

setCurrencySymbol

public void setCurrencySymbol(String newSymbol)

Sets the string the receiver uses to represent currency.

See Also: currencySymbol

setDecimalSeparator

public void setDecimalSeparator(String aString)

Sets the character the receiver uses as a decimal separator to newSeparator. If newSeparator contains
multiple characters, only the first one is used. Throws an IllegalArgumentException if aString is
null or has length other than one character.

setFormat

public void setFormat(String format)

Deprecated in the Java Foundation framework. Don’t use this method. Use setPattern instead.

222

C L A S S N S N u m b e r F o r m a t t e r

setHasThousandSeparators

public void setHasThousandSeparators(boolean flag)

Sets according to flag whether the receiver uses thousand separators. When flag is false,
thousand separators are disabled for both positive and negative formats (even if you’ve set them
through another means, such as setPattern). When flag is true, thousand separators are used. In
addition to using this method to add thousand separators to your format, you can also use it to
disable thousand separators if you’ve set them using another method. The default is false
(though you in effect change this setting to true when you set thousand separators through any
means, such as setPattern)

setLocale

public void setLocale(java.util.Locale newLocale)

Sets according to newLocale the current locale of the receiver. Throws an
IllegalArgumentException if newLocale is null.

setLocalizesFormat

public void setLocalizesFormat(boolean newDefault)

Deprecated for the Foundation framework. Don’t use this method. Use setLocalizesPatterninstead.

setLocalizesPattern

public void setLocalizesPattern(boolean newDefault)

Sets according to newDefault whether the receiver’s pattern is set to be localized by
NSNumberFormatter based on the locale. NSNumberFormatter will choose the appropriate
currency symbol, decimal separator, thousands separator, string for zero, and string for not a
number based on locale if newDefault is true. By default, NSNumberFormatters are not localized.

C L A S S N S N u m b e r F o r m a t t e r

223

setMaximum

public void setMaximum(java.math.BigDecimal aMaximum)

Sets the highest number the receiver allows as input to aMaximum. Throws an
IllegalArgumentException if aMaximum is not of type BigDecimal.

setMinimum

public void setMinimum(java.math.BigDecimal aMinimum)

Sets the lowest number the receiver allows as input to aMinimum. Throws an
IllegalArgumentException if aMinimum is not of type BigDecimal.

setNegativeFormat

public void setNegativeFormat(String format)

Deprecated in the Java Foundation framework. Don’t use this method. Use setNegativePattern
instead.

setNegativePattern

public void setNegativePattern(String aString)

Sets the pattern the receiver uses to display positive numbers to pattern. If pattern is illegal, the
method throws an IllegalArgumentException. See “Pattern String Syntax” (page 208) for an
explanation of what makes a pattern legal. Invokes the private method validatePattern() which
throws an IllegalArgumentException if the pattern is null, the pattern string is empty, or the
string does not contain one of the characters in ",._#0123456789".

See Also: setPattern

setPattern

public void setPattern(String aPattern)

Sets the receiver’s format to the string aPattern. This pattern can consist of one, two, or three parts
separated by “;”. The first part of the string represents the positive pattern, the second part of the
string represents the zero value, and the last part of the string represents the negative pattern. If

224

C L A S S N S N u m b e r F o r m a t t e r

the string just has two parts, the first one becomes the positive pattern, and the second one
becomes the negative pattern. If the string just has one part, it becomes the positive pattern, and
default formats are provided for zero and negative values based on the positive format. For more
discussion of this subject, see the section “Creating an Instance of NSNumberFormatter” (page
207) in the Class Description.

If the positive, negative, or zero pattern is illegal, the method throws an
IllegalArgumentException. See “Pattern String Syntax” (page 208) for an explanation of what
makes a pattern legal.

The following code excerpt shows the three different approaches for setting an
NSNumberFormatter object’s format using setPattern:

NSNumberFormatter numberFormatter = new NSNumberFormatter();

// specify just positive format
numberFormatter.setPattern("$#,##0.00");

// specify positive and negative formats
numberFormatter.setPattern("$#,##0.00;($#,##0.00)");

// specify positive, zero, and negative formats
numberFormatter.setFormat("$#,###.00;0.00;($#,##0.00)");

See Also: pattern

setPositiveFormat

public void setPositiveFormat(String format)

Deprecated in the Java Foundation framework. Don’t use this method. Use setPositivePattern
instead.

C L A S S N S N u m b e r F o r m a t t e r

225

setPositivePattern

public void setPositivePattern(String pattern)

Sets the pattern the receiver uses to display positive numbers to pattern. If pattern is illegal, the
method throws an IllegalArgumentException. See “Pattern String Syntax” (page 208) for an
explanation of what makes a pattern legal. Invokes the private method validatePattern() which
throws an IllegalArgumentException if the pattern is null, the pattern string is empty, or the
string does not contain one of the characters in ",._#0123456789".

See Also: setPattern

setRoundingBehavior

public void setRoundingBehavior(int newRoundingBehavior)

Sets the receiver’s rounding behavior to newRoundingBehavior. Throws an
IllegalArgumentException if newRoundingBehavior is not one of the standard rounding modes:
NSRoundDown, NSRoundUp, NSRoundPlain, NSRoundBankers. Consult the Foundation
functions and constants documentation for complete information on rounding modes.

setStringForNotANumber

public void setStringForNotANumber(String newString)

Sets the string the receiver uses to display “not a number” to newString. Throws an
IllegalArgumentException if newString is null.

setStringForNull

public void setStringForNull(String newString)

Sets the string the receiver uses to display null values to newString. Throws an
IllegalArgumentException if newString is null.

setStringForZero

public void setStringForZero(String aString)

Sets the string the receiver uses to display zero values to newString.

226

C L A S S N S N u m b e r F o r m a t t e r

setThousandSeparator

public void setThousandSeparator(String newSeparator)

Sets the character the receiver uses as a thousand separator to newSeparator. If newSeparator contains
multiple characters, only the first one is used. If you don’t have thousand separators enabled
through any other means (such as setPattern), using this method enables them. Throws an
IllegalArgumentException if newSeparator is null or has length other than one character.

stringForNotANumber

public String stringForNotANumber()

Returns the string the receiver uses to display “not a number” values. By default “not a number”
values are displayed as the string "NaN".

stringForNull

public String stringForNull()

Returns the string the receiver uses to display null values. By default, null values are displayed
as an empty string.

stringForObjectValue

public String stringForObjectValue(Object object) throws IllegalArgumentException

Returns a string representing object formatted according to the receiver’s pattern. Throws an
IllegalArgumentException if object is not an instance of Number.

See Also: setPattern

stringForZero

public String stringForZero()

Returns the string the receiver uses to display zero values. By default zero values are displayed
according to the format specified for positive values; for more discussion of this subject see the
section “Creating an Instance of NSNumberFormatter” (page 207) in the Class Description.

C L A S S N S N u m b e r F o r m a t t e r

227

thousandSeparator

public String thousandSeparator()

Returns a string containing the character the receiver uses to represent thousand separators. By
default this is the comma character (,). Note that the return value doesn’t indicate whether
thousand separators are enabled.

228

C L A S S N S N u m b e r F o r m a t t e r

229

C L A S S

NSPathUtilities

Inherits from: Object

Package: com.webobjects.foundation

Class Description

This class provides static methods that are useful when working with paths. Specifically, it
includes methods that extract particular path components (lastPathComponent and pathExtension),
modify paths (stringByAppendingPathComponent, stringByAppendingPathExtension,
stringByDeletingLastPathComponent, stringByDeletingPathExtension, and stringByStandardizingPath), and
return special paths (homeDirectory).

The NSPathUtilities class cannot be instantiated.

Method Types

Extracting path components

lastPathComponent

pathExtension

230

C L A S S N S P a t h U t i l i t i e s

Manipulating paths

stringByAppendingPathComponent

stringByAppendingPathExtension

stringByDeletingLastPathComponent

stringByDeletingPathExtension

stringByNormalizingExistingPath

stringByStandardizingPath

Resolving special paths

homeDirectory

Deprecated methods

URLWithPath

fileExistsAtPath

pathIsAbsolute

pathIsEqualToString

Static Methods

fileExistsAtPath

public static boolean fileExistsAtPath(String aString)

Deprecated in the Java Foundation framework. Don’t use this method. Use (new
File(aString)).exists() instead.

homeDirectory

public static String homeDirectory()

Returns a string containing the home directory path for the user who executes the application.

C L A S S N S P a t h U t i l i t i e s

231

lastPathComponent

public static String lastPathComponent(String aString)

Returns the last path component of aString. The following table illustrates the effect of
lastPathComponent on a variety of different paths:

pathExtension

public static String pathExtension(String aString)

Interprets aString as a path, returning the aString’s extension, if any (not including the extension
divider). The following table illustrates the effect of pathExtension on a variety of different paths:

pathIsAbsolute

public static boolean pathIsAbsolute(String aString)

Deprecated in the Java Foundation framework. Don’t use this method. Use (new
File(aString)).isAbsolute() instead.

aString’s Value String Returned

“/tmp/scratch.tiff” “scratch.tiff”

“/tmp/scratch” “scratch”

“/tmp/” “tmp”

“scratch” “scratch”

“/” “” (an empty string)

aString’s Value String Returned

“/tmp/scratch.tiff” “tiff”

“/tmp/scratch” “” (an empty string)

“/tmp/” “” (an empty string)

“/tmp/scratch..tiff” “tiff”

232

C L A S S N S P a t h U t i l i t i e s

pathIsEqualToString

public static boolean pathIsEqualToString(
String string1,
String string2)

Deprecated in the Java Foundation framework. Don’t use this method. You should never have
to invoke it.

stringByAppendingPathComponent

public static String stringByAppendingPathComponent(
String string1,
String string2)

Returns a string made by appending string1 with string2, preceded by if necessary by a path
separator. The following table illustrates the effect of this method on a variety of different paths,
assuming that string2 is supplied as “scratch.tiff”:

See Also: stringByAppendingPathExtension, stringByDeletingLastPathComponent

string1’s Value Resulting String

“/tmp” “/tmp/scratch.tiff”

“/tmp/” “/tmp/scratch.tiff”

“/” “/scratch.tiff”

“” (an empty string) “scratch.tiff”

C L A S S N S P a t h U t i l i t i e s

233

stringByAppendingPathExtension

public static String stringByAppendingPathExtension(
String string1,
String string2)

Returns a string made by appending to string1 an extension separator followed by string2. Note
that if string1 ends with one or more slashes (“/”), these slashes are deleted. The following table
illustrates the effect of this method on a variety of different paths, assuming that string2 is
supplied as “tiff”:

stringByDeletingLastPathComponent

public static String stringByDeletingLastPathComponent(String aString)

Returns a string made by deleting the last path component from aString, along with any final
path separator. If aString represents the root path, however, it’s returned unaltered. The
following table illustrates the effect of this method on a variety of different paths:

See Also: stringByDeletingPathExtension, stringByAppendingPathComponent

string1’s Value Resulting String

“/tmp/scratch.old” “/tmp/scratch.old.tiff”

“/tmp/scratch.” “/tmp/scratch..tiff”

“/tmp/” “/tmp.tiff”

“scratch” “scratch.tiff”

aString’s Value Resulting String

“/tmp/scratch.tiff” “/tmp”

“/tmp/lock/” “/tmp”

“/tmp/” “/”

“/tmp” “/”

“/” “/”

“scratch.tiff” “” (an empty string)

234

C L A S S N S P a t h U t i l i t i e s

stringByDeletingPathExtension

public static String stringByDeletingPathExtension(String aString)

Returns a string made by deleting the extension (if any, and only the last) from aString. Strips any
trailing path separator before checking for an extension. If aString represents the root path,
however, it’s returned unaltered. The following table illustrates the effect of this method on a
variety of different paths:

See Also: pathExtension, stringByDeletingLastPathComponent

stringByNormalizingExistingPath

public static String stringByNormalizingExistingPath(String aString)

Returns a string containing the “normalized” path for an existing file with path aString. If the file
does not exist, this method returns null. The normalized path is always absolute and corresponds
to the canonical path returned by the java.io.File.getCanonicalPath method. See Sun’s
documentation for this method for more information.

See Also: stringByStandardizingPath

stringByStandardizingPath

public static String stringByStandardizingPath(String aString)

Returns a string made by resolving various elements of aString. If the path contains tilde (~),
inserts the home directory path in its place. If the path contains the parent directory marker (..)
removes the previous path component from the path. If the parent directory marker is at the

aString’s Value Resulting String

“/tmp/scratch.tiff” “/tmp/scratch”

“/tmp/” “/tmp”

“scratch.bundle/” “scratch”

“scratch..tiff” “scratch.”

“.tiff” “” (an empty string)

“/” “/”

C L A S S N S P a t h U t i l i t i e s

235

beginning of aString, throws an IllegalArgumentException. The following table illustrates the
effect of this method on a variety of different paths assuming that the home directory is “/Local/
Users/guest”:

URLWithPath

public static java.net.URL URLWithPath(String aString)

Deprecated in the Java Foundation framework. Don’t use this method. Use new URL(“file://” +
aString) instead.

aString’s Value Resulting String

“~/scratch.tiff” “/Local/Users/guest/scratch.tiff”

“~” “/Local/Users/guest”

“~/..” “/Local/Users/”

“guest/../john/scratch.tiff” “john/scratch.tiff”

“../scratch.tiff” throws IllegalArgumentException

236

C L A S S N S P a t h U t i l i t i e s

237

C L A S S

NSProperties

Inherits from: Object

Package: com.webobjects.foundation

Class Description

The NSProperties class enhances Java’s properties mechanism to merge application properties
with the standard system properties available using the java.lang.System.getProperties() method.
The application properties can come from three sources: the command line, the application’s
Properties file, and the Properties files of any frameworks your application includes.

This class has only static methods and cannot be instantiated.

Accessing the Properties
To access the application properties you first need to merge the application and command line
properties with the system properties. A WebObjects application automatically performs this
step for you. You can then access the property as a string, and convert the string to the property’s
actual data type.

To obtain the application properties and merge them with the system properties you invoke
setPropertiesFromArgv. Application properties can come from the application’s Properties file, the
Properties files for the frameworks the application includes, and the command line. For more
information about Properties files, see “The Properties File” (page 238). For more information
about specifying properties on the command line, see “Command Line Properties” (page 238).

238

C L A S S N S P r o p e r t i e s

Every property is a key-value pair. For example, on Unix machines, the property value for the
key “file.separator” is “/”. To access a property corresponding to a particular key, use the
java.lang.System.getProperty method. This method returns the property as a string.

If the property string represents a boolean value, NSArray, or NSDictionary you need to convert
it to the appropriate data type using the NSPropertyListSerialization booleanForString,
arrayForString, or dictionaryForString method, respectively. NSPropertyListSerialization also
provides an intForString method to simplify converting a property string to an integer.

The Properties File
The properties must be stored in a file named Properties in the application or framework’s
Resources directory. You can add a Properties file to your application or framework by adding it to
the Resources suitcase in Project Builder.

The Properties file must be in the format specified by java.io.Properties. See Sun’s
documentation for the load method in that class for the format specification.

Boolean values, NSArrays, and NSDictionaries must be specified using the property list
representation. See the NSPropertyListSerialization class description for more information on
property lists.

Command Line Properties
The setPropertiesFromArgv method parses the command line arguments are recognizes the property
formats listed in the table below.

Properties specified in these formats will be available as system properties after you invoke
setPropertiesFromArgv.

Format Example

-Dkey=value -DWOPort=4321

-key value -WOAutoOpenInBrowser NO

C L A S S N S P r o p e r t i e s

239

Static Methods

arrayForKey

public static NSArray arrayForKey(String key)

Deprecated in the Java Foundation framework. Don’t use this method. Instead, get the system
property using System.getProperty(key) and convert it to an NSArray using
NSPropertyListSerialization‘s arrayForString method.

Returns the system property with the specified name as an NSArray or null if no system property
with that name exists. Throws a NullPointerException if key is null.

booleanForKey

public static boolean booleanForKey(String key)

Deprecated in the Java Foundation framework. Don’t use this method. Instead, get the system
property using System.getProperty(key) and convert it to a boolean using
NSPropertyListSerialization‘s booleanForString method.

Returns the system property with the specified name as a boolean. Returns false if no system
property with that name exists. Throws a NullPointerException if key is null.

dataForKey

public static NSData dataForKey(String key)

Deprecated in the Java Foundation framework. Don’t use this method. Instead, get the system
property using System.getProperty(key), convert it to a property list using
NSPropertyListSerialization’s propertyListFromString method, and convert the property list to an
NSData object using NSPropertyListSerialization‘s dataFromPropertyList method.

Interprets the system property with the specified name as a string representation of a property
list, converts it to bytes using the current encoding, and stores the result in an NSData object.
Returns null if no system property with that name exists. Throws a NullPointerException if key
is null.

240

C L A S S N S P r o p e r t i e s

dictionaryForKey

public static NSDictionary dictionaryForKey(String key)

Deprecated in the Java Foundation framework. Don’t use this method. Instead, get the system
property using System.getProperty(key) and convert it to an NSDictionary using
NSPropertyListSerialization‘s dictionaryForString method.

Returns the system property with the specified name as an NSDictionary. Returns null if no
system property with that name exists. Throws a NullPointerException if key is null.

doubleForKey

public static double doubleForKey(String key)

Deprecated in the Java Foundation framework. Don’t use this method. Instead, get the system
property using System.getProperty(key) and convert it to a double.

Returns the system property with the specified name as a double. Returns 0 if no system property
with that name exists. Throws a NullPointerException if key is null.

floatForKey

public static float floatForKey(String key)

Deprecated in the Java Foundation framework. Don’t use this method. Instead, get the system
property using System.getProperty(key) and convert it to a float.

Returns the system property with the specified name as a float. Returns 0 if no system property
with that name exists. Throws a NullPointerException if key is null.

integerForKey

public static int integerForKey(String key)

Deprecated in the Java Foundation framework. Don’t use this method. Instead, get the system
property using System.getProperty(key) and convert it to an int using NSPropertyListSerialization‘s
intForString method.

Returns the system property with the specified name as an int. Returns 0 if no system property
with that name exists. Throws a NullPointerException if key is null.

C L A S S N S P r o p e r t i e s

241

longForKey

public static long longForKey(String key)

Deprecated in the Java Foundation framework. Don’t use this method. Instead, get the system
property using System.getProperty(key) and convert it to a long.

Returns the system property with the specified name as a long. Returns 0 if no system property
with that name exists. Throws a NullPointerException if key is null.

setPropertiesFromArgv

public static void setPropertiesFromArgv(String[] argv)

Loads all of the application’s properties and merges them with the Java System properties. This
method obtains the properties (by invoking NSBundle’s properties method) for every bundle in
the application including the application and all of the frameworks it includes. It also merges
any properties specified by the string array into the system properties.

stringForKey

public static String stringForKey(String key)

Deprecated in the Java Foundation framework. Don’t use this method. Instead, get the system
property using System.getProperty(key).

Equivalent to System.getProperty(key).

valuesFromArgv

public static NSDictionary valuesFromArgv(String[])

Description forthcoming.

242

C L A S S N S P r o p e r t i e s

Apple Confidential. This information is preliminary. 243

C L A S S

NSPropertyListSerialization

Inherits from: Object

Package: com.webobjects.foundation

Class Description

This class provides static methods that convert between property lists and their string
representations, which can be either strings or NSData objects. A property list is a structure that
represents organized data. It can be built from a combination of NSArrays, NSDictionaries,
Strings, and NSData objects.

The string representation can be in XML or the ASCII plist format. To distinguish between the
two formats, the parser that converts strings to property lists checks if the string starts with
<?xml. A discussion of the ASCII plist format, A Primer on ASCII Property Lists, is available in the
Mac OS X section of the Apple Developer Connection website. A discussion of XML property
lists, Property List Services, is also available in the same area of the Apple Developer Connection
website.

Some methods do not support XML property list representations, specifically booleanForString
and intForString.

The NSPropertyListSerialization class cannot be instantiated.

244 Apple Confidential. This information is preliminary.

C L A S S N S P r o p e r t y L i s t S e r i a l i z a t i o n

Method Types

Extracting typed data

arrayForString

booleanForString

dictionaryForString

intForString

Converting to property lists

propertyListFromData

propertyListFromString

Converting from property lists

dataFromPropertyList

stringFromPropertyList

Static Methods

arrayForString

public static NSArray arrayForString(String string)

Parses the property list representation string and returns the resulting property list as an
NSArray. If the root object is not an array, this method throws a ClassCastException.

See Also: dictionaryForString.

C L A S S N S P r o p e r t y L i s t S e r i a l i z a t i o n

Apple Confidential. This information is preliminary. 245

booleanForString

public static boolean booleanForString(String string)

Returns a boolean based on string according to the following table:

The tests for “YES” and “true” are case insensitive.

dataFromPropertyList

public static NSData dataFromPropertyList(
Object object,
String encoding)

public static NSData dataFromPropertyList(Object object)

Converts the property list object into a string and returns it as a NSData object. The encoding
parameter specifies the encoding used to convert the characters in the result string to byte. The
one-argument version of the method uses the platform’s default character encoding.

See Also: stringFromPropertyList

dictionaryForString

public static NSDictionary dictionaryForString(String string)

Parses the property list representation string and returns the resulting property list as an
NSDictionary. If the root object is not a dictionary, this method throws a ClassCastException.

See Also: arrayForString.

string’s value Value returned

“YES” true

“true” true

Any other value false

246 Apple Confidential. This information is preliminary.

C L A S S N S P r o p e r t y L i s t S e r i a l i z a t i o n

intForString

public static int intForString(String string)

Parses string and returns the corresponding integer. If string is null, returns zero.

propertyListFromData

public static Object propertyListFromData(
NSData data,
String encoding)

public static Object propertyListFromData(NSData data)

Returns a property list converted from the byte array representation in data. The encoding
parameter specifies the encoding used to convert the bytes in the data byte array to characters in
a string representation. The one-argument version of the method uses the platform’s default
character encoding.

See Also: propertyListFromString

propertyListFromString

public static Object propertyListFromString(String string)

Returns a property list converted from the string representation string.

stringFromPropertyList

public static String stringFromPropertyList(Object object)

Converts the property list object into a string and returns it.

247

C L A S S

NSRange

Inherits from: Object

Implements: Cloneable
Serializable

Package: com.webobjects.foundation

Class Description

An NSRange represents a range, a measurement of a segment of something linear, such as a byte
stream. An NSRange has two primary values, a location and a length. The methods of NSRange
give access to these values, convert between NSRanges and their string representations, test and
compare ranges, and create ranges based on operations involving the union, intersection, and
subtraction of two ranges.

Table 0-12 describes the NSRange methods that provide the basis for all NSRange’s other
methods; that is, all other methods are implemented in terms of these two. If you create a
subclass of NSRange, you need only ensure that these base methods work properly. Having
done so, you can be sure that all your subclass's inherited methods operate properly.

Table 0-12 NSRange’s Base API

Method Description

length Returns the length of the receiver from its starting location.

location Returns the starting location of the receiver.

248

C L A S S N S R a n g e

Constants

NSRange provides the following constant as a convenience; you can use it to compare values
returned by some NSRange methods:

Interfaces Implemented

Cloneable

clone

Method Types

Constructors

NSRange

Accessing range elements

length

location

Manipulating ranges

rangeByIntersectingRange

rangeByUnioningRange

Constant Type Description

ZeroRange NSRange An NSRange set to zero in location and length.

C L A S S N S R a n g e

249

subtractRange

Testing ranges

containsLocation

intersectsRange

isEmpty

isEqualToRange

isSubrangeOfRange

locationInRange

maxRange

Methods inherited from Object

equals

hashCode

toString

Converting Strings to NSRanges

fromString

Constructors

NSRange

public NSRange()

Creates an NSRange with zero location and length. For better performance, use the ZeroRange
shared instance. See Constants.

public NSRange(NSRange aRange)

Creates a new NSRange with the location and length values of aRange.

250

C L A S S N S R a n g e

public NSRange(
int location,
int length)

Creates a new NSRange with the range elements of location and length. Throws an
IllegalArgumentException if either integer is negative.

Static Methods

fromString

public static NSRange fromString(String rangeAsString)

Creates an NSRange from the string rangeAsString. The string must be of the form “{loc,len}”
where loc is a number representing the starting location of the range and len is the range’s length.
Throws an IllegalArgumentException if the string is improperly formatted.

See Also: toString

Instance Methods

clone

public Object clone()

Simply returns the receiver. Since NSRange objects are immutable, there’s no need to make an
actual clone.

containsLocation

public boolean containsLocation(int aLocation)

Returns whether the location aLocation falls within the limits specified by the receiver.

See Also: intersectsRange, location

C L A S S N S R a n g e

251

equals

public boolean equals(Object otherObject)

Returns whether otherObject is an NSRange and is equal in location and length to the receiver.

See Also: isEqualToRange, isSubrangeOfRange

hashCode

public int hashCode()

Provide an appropriate hash code useful for storing the receiver in a hash-based data structure.

intersectsRange

public boolean intersectsRange(NSRange aRange)

Returns whether the range aRange intersects the receiver.

See Also: rangeByIntersectingRange

isEmpty

public boolean isEmpty()

Returns whether the length of the receiver is zero.

See Also: maxRange

isEqualToRange

public boolean isEqualToRange(NSRange aRange)

Returns whether the range aRange is equal in both location and length to the receiver.

See Also: equals, isSubrangeOfRange

252

C L A S S N S R a n g e

isSubrangeOfRange

public boolean isSubrangeOfRange(NSRange aRange)

Returns whether the receiver’s end points match or fall within those of range aRange.

See Also: intersectsRange

length

public int length()

Returns the length of the receiver from its starting location.

See Also: location

location

public int location()

Returns the starting location of the receiver.

See Also: length

locationInRange

public boolean locationInRange(int aLocation)

This method is deprecated. Use containsLocation instead.

maxRange

public int maxRange()

Returns the extent of the receiver (its starting location plus its length). This number is one greater
than the last location in the range.

See Also: isEmpty, length, location

C L A S S N S R a n g e

253

rangeByIntersectingRange

public NSRange rangeByIntersectingRange(NSRange aRange)

Returns an NSRange that is the intersection of aRange and the receiver. If the ranges do not
intersect, returns an empty range (see isEmpty).

See Also: rangeByUnioningRange, subtractRange

rangeByUnioningRange

public NSRange rangeByUnioningRange(NSRange aRange)

Returns an NSRange that is the union of aRange and the receiver (a range constructed from the
lowest starting location and the highest ending location of both NSRanges).

See Also: rangeByIntersectingRange, subtractRange

subtractRange

public void subtractRange(
NSRange otherRange,
NSMutableRange resultRange1,
NSMutableRange resultRange2)

Returns the ranges resulting from the subtraction of otherRange from the receiver by modifying
the mutable ranges resultRange1 and resultRange2 (provided by the caller). Either or both of the
the result ranges might be empty when this method returns.

See Also: rangeByIntersectingRange, rangeByUnioningRange

toString

public String toString()

Returns a string representing the receiver. The string is in the form “{loc,len}” where loc is the
starting location of the range and len is its length.

See Also: fromString

254

C L A S S N S R a n g e

255

C L A S S

NSRecursiveLock

Inherits from: Object

Implements: NSLocking

Package: com.webobjects.foundation

Class Description

NSRecursiveLock defines a lock that may be acquired multiple times by the same thread without
causing a deadlock, a situation where a thread is permanently blocked waiting for itself to
relinquish a lock. While the locking thread has one or more locks, all other threads are prevented
from accessing the code protected by the lock. Here’s an example where a recursive lock
functions properly but other lock types would deadlock:

NSRecursiveLock theLock = new NSRecursiveLock();
...
theLock.lock();
/* lengthy operations involving global data */
theLock.lock(); /* possibly invoked in a subroutine */
...
theLock.unlock(); /* relinquishes most recent lock */
...
theLock.unlock(); /* relinquishes the first lock */

Unless theLock was an NSRecursiveLock, a deadlock condition would occur at the second lock
message in the example above.

256

C L A S S N S R e c u r s i v e L o c k

The NSRecursiveLock object keeps track of the recursion count: the number of lock requests that
the owning thread has made and not unlocked. This is also the number of times unlock must be
invoked to return the lock. To access the recursion count, use the recursionCount method.

The NSLock, NSMultiReaderLock, and NSRecursiveLock classes all adopt the NSLocking
protocol and offer various additional features and performance characteristics. See the NSLock
and NSMultiReaderLock class descriptions for more information.

Method Types

Constructors

NSRecursiveLock

Instance methods

lock

tryLock

lockBeforeDate

recursionCount

toString

unlock

Constructors

NSRecursiveLock

public NSRecursiveLock()

Creates an NSRecursiveLock.

C L A S S N S R e c u r s i v e L o c k

257

Instance Methods

lock

public void lock()

Conformance to NSLocking. See the method description of lock in the interface description for
NSLocking. If the current thread already owns the lock, this method increments the recursion
count.

lockBeforeDate

public boolean lockBeforeDate(NSTimestamp timestamp)

This method is deprecated. Use tryLock(NSTimestamp timestamp) instead.

recursionCount

public synchronized long recursionCount()

Returns the receiver’s recursion count (the number of unlocks needed to return the lock) if the
current thread owns the lock. If the current thread is not the owner of the lock, returns zero.

toString

public String toString()

Returns a string representation of the receiver that includes the thread that owns it and its
recursion count.

258

C L A S S N S R e c u r s i v e L o c k

tryLock

public boolean tryLock()

Attempts to acquire a lock. If the lock is not already taken by another thread, acquires the lock,
sets the recursion count to 1 and returns true. If the current thread owns the lock, increments the
recursion count and returns with a value of true. If the another thread owns the lock, returns
false immediately.

public boolean tryLock(long msec)

Attempts to acquire a lock for msec milliseconds. If the current thread owns the lock, increments
the recursion count and returns true. Otherwise, the thread is blocked until the receiver acquires
the lock or msec milliseconds have passed. Returns true if the lock is acquired within this time
limit. Returns false if the time limit expires before a lock can be acquired.

public boolean tryLock(NSTimestamp timestamp)

Attempts to acquire a lock until the time specified by timestamp. If the current thread owns the
lock, increments the recursion count and returns true. Otherwise, the thread is blocked until the
receiver acquires the lock or timestamp is reached. Returns true if the lock is acquired within this
time limit. Returns false if the time limit expires before a lock can be acquired.

unlock

public synchronized void unlock()

public synchronized void unlock(long levels)

Decrements the recursion count by levels (decrements the recursion count by one in the
no-argument version). If the resulting recursion level is zero, returns the lock. This method
throws an Error if the thread that invokes it is not the lock’s owner. Invoking this method when
the lock count is zero does nothing.

259

C L A S S

NSSelector

Inherits from: Object

Implements: Serializable

Package: com.webobjects.foundation

Class Description

An NSSelector object (also called a selector) specifies a method signature, which is a method’s
name and parameter list. You can later apply a selector on any object, and it performs the method
that matches the selector, if there is one.

To create a selector, use NSSelector’s single constructor, which takes the method’s name and an
array of the parameter types. Note that to obtain a Class object for a type, append .class to the
type’s name. For example, the Class object for Object is Object.class and the Class object for
boolean is boolean.class

This code sample creates a selector for the doIt method:

void doIt(String str, int i) { . . . }
NSSelector sel =

new NSSelector(“doIt”, new Class[] {String.class, int.class});

To apply a selector on an object, use the overloaded instance method invoke. It performs the
method that matches the selector and returns the result. If the target object doesn’t have a
method matching the selector, it throws NoSuchMethodException. The most basic form of invoke
takes the target object and an Object array of the arguments. Other forms are convenience

260

C L A S S N S S e l e c t o r

methods for selectors with no, one, or two arguments. Note that to pass an argument of a
primitive type to invoke, use an object of the corresponding wrapper class. invoke converts the
object back to the primitive type when it invokes the method. For example, to pass the float f,
use new Float(f); and to pass the boolean value true, use new Boolean(true).

This code sample gives you two ways to apply the selector sel (defined above) to an object:

MyClass obj1 = new MyClass(), obj2 = new MyClass();
int i = 5;
sel.invoke(obj1, new Object[] { “hi”, new Integer(i) });
sel.invoke(obj2, “bye”, new Integer(10));

To create and apply a selector in one step, use the overloaded static method invoke. The basic form
takes four arguments: the method name, an array of the parameter types, the target object, and
an array of the arguments. Other forms are convenience methods for selectors with one or two
arguments. This code sample shows two ways to create and apply a selector for the doIt method:

void doIt(String str, int i) { . . . }
MyClass obj1 = new MyClass(), obj2 = new MyClass();
int i = 5;

NSSelector.invoke(“doIt”, new Class[] {String.class, int.class},
obj1, new Object[] {“hi”, new Integer(i)});

NSSelector.invoke(“doIt”, String.class, int.class,
obj1, “bye”, new Integer(10));

Other methods return whether an object or class has a method that matches a selector
(implementedByObject and implementedByClass) and returns the method name and parameter types for
a selector (name and parameterTypes).

NSSelector is similar to java.lang.reflect.Method, which fully specifies a particular class’s
implementation of a method, and you can apply it only to objects of that class. NSSelector
doesn’t specify the method’s class, so you can apply it to an object of any class. To find the
java.lang.reflect.Method object for a method that matches a selector and that’s in a particular
object or class, use methodOnObject or methodOnClass.

C L A S S N S S e l e c t o r

261

Method Types

Constructors

NSSelector

Static methods

invoke

Invoking selectors

invoke

Testing selectors

implementedByClass

implementedByObject

Converting selectors to java.lang.reflect.Methods

methodOnClass

methodOnObject

Accessing selector elements

name

parameterTypes

Methods inherited from Object

equals

hashCode

toString

262

C L A S S N S S e l e c t o r

Constructors

NSSelector

public NSSelector(String methodName)

Creates a selector for the method that’s named methodName and takes no parameters.

public NSSelector(
String methodName,
Class[] parameterTypes)

Creates a selector for the method that’s named methodName and takes parameters parameterTypes. To
create a selector for a method that takes no arguments, use null for parameterTypes. For an example,
see the class description for this class.

Static Methods

invoke

public static Object invoke(
String methodName,
Class[] parameterTypes,
Object target,
Object[] arguments) throws IllegalAccessException,
IllegalArgumentException,
java.lang.reflect.InvocationTargetException,
NoSuchMethodException

Creates and applies a selector that has any number of arguments. This method creates a selector
with methodName and the parameter types in the array parameterTypes, applies that selector to target
with the arguments in the array arguments, and returns the result. To apply a method that takes
no arguments, use null for the arrays parameterTypes and arguments. As part of its implementation,
this method uses the NSSelector constructor and the instance method invoke. For more
information, see those method descriptions.

C L A S S N S S e l e c t o r

263

public static Object invoke(
String methodName,
Class parameterType,
Object target,
Object argument) throws IllegalAccessException,
IllegalArgumentException,
java.lang.reflect.InvocationTargetException,
NoSuchMethodException

Creates and applies a selector that has one argument. This method creates a selector with
methodName and parameterType, applies that selector to target with argument, and returns the result. As
part of its implementation, this method uses the NSSelector constructor and the instance method
invoke. For more information, see those method descriptions.

public static Object invoke(
String methodName,
Class parameterType1,
Class parameterType2,
Object target,
Object argument1,
Object argument2) throws IllegalAccessException,
IllegalArgumentException,
java.lang.reflect.InvocationTargetException,
NoSuchMethodException

Creates and applies a selector that has two arguments. This method creates a selector with
methodName and the parameter types parameterType1 and parameterType2, applies that selector to target
with the arguments argument1 and argument2, and returns the result. As part of its implementation,
this method uses the NSSelector constructor and the instance method invoke. For more
information, see those method descriptions.

Instance Methods

equals

public boolean equals(Object anObject)

Compares the receiving NSSelector object to anObject. If anObject is an NSSelector and the contents
of anObject are equal to the contents of the receiver, this method returns true. If not, it returns false.
Two selectors are equal if their names and parameter types are equal.

264

C L A S S N S S e l e c t o r

hashCode

public int hashCode()

Provide an appropriate hash code useful for storing the receiver in a hash-based data structure.

implementedByClass

public boolean implementedByClass(Class targetClass)

Returns whether the class targetClass implements a method that matches the selector.

implementedByObject

public boolean implementedByObject(Object target)

Returns whether the object target implements a method that matches the selector. As part of its
implementation, this method uses implementedByClass.

invoke

public Object invoke(
Object target,
Object[] arguments) throws IllegalAccessException,
IllegalArgumentException,
java.lang.reflect.InvocationTargetException,
NoSuchMethodException

Invokes the method specified by the selector on target with arguments, and returns the result. If that
method is void, it returns null. Note that the method may be a static or instance method.

invoke can’t handle arguments or return values of primitive types (such as boolean, int, or float).
If the method matching the selector returns a value of a primitive type, invoke returns the value
in an object of the corresponding wrapper type (such as Boolean, Integer, or Float). To pass an
argument of a primitive type to invoke, use an object of the corresponding wrapper class. invoke
converts the object back to the primitive type when it invokes the method.

invoke throws an exception in the following cases:

■ If target has no method that matches the selector, it throws NoSuchMethodException.

■ If a method matches the selector but is inaccessible to target, it throws IllegalAccessException.

C L A S S N S S e l e c t o r

265

■ If it can’t convert an argument to the type specified in the selector, it throws
IllegalArgumentException.

■ If the invoked method throws an exception, it wraps that exception in a
java.lang.reflect.InvocationTargetException and throws the new exception without
completing.

As part of its implementation, this method uses methodOnClass.

For an example, see the class description for this class.

public Object invoke(
Object target) throws IllegalAccessException,
IllegalArgumentException,
java.lang.reflect.InvocationTargetException,
NoSuchMethodException

Invokes the method specified by the selector on target with no arguments, and returns the result.
If that method is void, it returns null. Note that the method may be a static or instance method.

As part of its implementation, this method calls the invoke instance method that takes an array of
arguments. For more information, see that method’s description.

public Object invoke(
Object target,
Object argument) throws IllegalAccessException,
IllegalArgumentException,
java.lang.reflect.InvocationTargetException,
NoSuchMethodException

Invokes the method specified by the selector on target with one argument (argument), and returns
the result. If that method is void, it returns null. Note that the method may be a static or instance
method.

As part of its implementation, this method calls the invoke instance method that takes an array of
arguments. For more information, see that method’s description.

public Object invoke(
Object target,
Object argument1,
Object argument2) throws IllegalAccessException,

266

C L A S S N S S e l e c t o r

IllegalArgumentException,
java.lang.reflect.InvocationTargetException,
NoSuchMethodException

Invokes the method specified by the selector on target with two arguments (argument1 and
argument2), and returns the result. If that method is void, it returns null. Note that the method may
be a static or instance method.

As part of its implementation, this method calls the invoke instance method that takes an array of
arguments. For more information, see that method’s description.

methodOnClass

public java.lang.reflect.Method methodOnClass(Class targetClass)
throws NoSuchMethodException

Returns the method on the class targetClass that matches the selector. If targetClass has no method
that matches the selector, this method throws NoSuchMethodException.

methodOnObject

public java.lang.reflect.Method methodOnObject(Object target)
throws NoSuchMethodException

Returns the method on the object target that matches the selector. If target has no method that
matches the selector, this method throws NoSuchMethodException.

name

public String name()

Returns the name of the method specified by the selector.

parameterTypes

public Class[] parameterTypes()

Copies and returns the array of parameter types specified by the selector.

C L A S S N S S e l e c t o r

267

toString

public String toString()

Returns a string representation of the receiver indicating its class and method name.

268

C L A S S N S S e l e c t o r

269

C L A S S

NSSet

Inherits from: Object

Implements: Cloneable
java.io.Serializable
NSCoding

Package: com.webobjects.foundation

Class Description

The NSSet and NSMutableSet classes declare the programmatic interface to an object that
manages a set of objects. NSSet provides support for the mathematical concept of a set. A set,
both in its mathematical sense and in the implementation of NSSet, is an unordered collection of
distinct elements. The NSMutableSet class is provided for sets whose contents may be altered.

NSSet declares the programmatic interface for static sets of objects. You establish a static set’s
entries when it’s created, and thereafter the entries can’t be modified. NSMutableSet, on the
other hand, declares a programmatic interface for dynamic sets of objects. A dynamic—or
mutable—set allows the addition and deletion of entries at any time, automatically allocating
memory as needed.

Use sets as an alternative to arrays when the order of elements isn’t important and performance
in testing whether an object is contained in the set is a consideration—while arrays are ordered,
testing for membership is slower than with sets. When testing for set membership, the equals
method is invoked only once.

270

C L A S S N S S e t

Methods that add entries to sets—whether during construction (for all sets) or modification (for
mutable sets)—add each member to the set directly. This means that you must ensure that the
members do not change. If you expect your members to change for any reason, you should make
copies of them and add the copies to the set.

Table 0-13 describes the NSSet methods that provide the basis for all NSSet’s other methods; that
is, all other methods are implemented in terms of these three. If you create a subclass of NSSet,
you need only ensure that these base methods work properly. Having done so, you can be sure
that all your subclass's inherited methods operate properly.

NSSet provides methods for querying the elements of the set. The allObjects method returns an
array containing the objects in a set. The anyObject method returns some object in the set.
Additionally, intersectsSet tests for set intersection, isEqualToSet tests for set equality, and
isSubsetOfSet tests for one set being a subset of another.

The objectEnumerator method provides for traversing elements of the set one by one.

Constants

NSSet provides the following constant as a convenience; you can use it when you need an empty
set.

Table 0-13 NSSet’s Base API

Method Description

count Returns the number of members in the set.

member Returns the object in the set that is equal to the specified
object.

objectsNoCopy Returns the actual array of objects in the set.

Constant Type Description

EmptySet NSSet A shared NSSet instance containing no members.

C L A S S N S S e t

271

Interfaces Implemented

Cloneable

clone

java.io.Serializable

NSCoding

classForCoder

decodeObject

encodeWithCoder

Method Types

Constructors

NSSet

Counting entries

count

Accessing the members

allObjects

anyObject

containsObject

member

objectEnumerator

objectsNoCopy

272

C L A S S N S S e t

Comparing sets

intersectsSet

isEqualToSet

isSubsetOfSet

Joining sets

setByIntersectingSet

setBySubtractingSet

setByUnioningSet

Methods inherited from Object

equals

hashCode

toString

Copying sets

immutableClone

mutableClone

Constructors

NSSet

public NSSet()

Creates an empty NSSet. To improve performance, use the EmptySet shared instance. See
Constants.

C L A S S N S S e t

273

public NSSet(NSArray anArray)

Creates an NSSet containing the objects in anArray.

public NSSet(NSSet aSet)

Creates an NSSet containing the objects in aSet.

public NSSet(Object object)

Creates an NSSet containing the single object object.

public NSSet(Object[] objects[])

Creates an NSSet containing the objects in the objects language array.

Static Methods

decodeObject

public static Object decodeObject(NSCoder coder)

Creates an NSSet from the data in coder.

See Also: NSCoding

Note: NSSet assumes that the member objects are immutable. If your member objects are
mutable, you should make copies of them and add the copies to the set.

Note: NSSet assumes that member objects are immutable. If your member objects are
mutable, you should make copies of them and add the copies to the set.

Note: NSSet assumes that member objects are immutable. If your member objects are
mutable, you should make copies of them and add the copies to the set.

274

C L A S S N S S e t

Instance Methods

allObjects

public NSArray allObjects()

Returns an array containing the receiver’s members, or an empty array if the receiver has no
members. The order of the objects in the array isn’t defined.

See Also: anyObject, objectEnumerator

anyObject

public Object anyObject()

Returns one of the objects in the set (essentially chosen at random), or null if the set contains no
objects.

See Also: allObjects, objectEnumerator

classForCoder

public Class classForCoder()

Conformance with NSCoding. Please see the method description of classForCoder in the interface
specification for NSCoding.

clone

public Object clone()

Returns a copy (a NSSet object) of the receiver. Since NSSets are immutable, there’s no need to
make an actual copy.

C L A S S N S S e t

275

containsObject

public boolean containsObject(Object anObject)

Returns true if anObject is present in the set, false otherwise.

See Also: member

count

public int count()

Returns the number of members in the set.

encodeWithCoder

public void encodeWithCoder(NSCoder aNSCoder)

Conformance with NSCoding. Please see the method description of encodeWithCoder in the
interface specification for NSCoding.

equals

public boolean equals(Object anObject)

Compares the receiving set to anObject. If anObject is an NSSet and the contents of anObject are
equal to the contents of the receiver, this method returns true. If not, it returns false.

hashCode

public int hashCode()

Provide an appropriate hash code useful for storing the receiver in a hash-based data structure.
This value is the number of objects in the set.

276

C L A S S N S S e t

immutableClone

public NSSet immutableClone()

Returns an immutable copy (an NSSet) of the receiver. Since the NSSets are immutable, there’s
no need to make an actual copy.

intersectsSet

public boolean intersectsSet(NSSet otherSet)

Returns true if at least one object in the receiver is also present in otherSet, false otherwise. The
result of this method corresponds to the mathematical concept of disjoint sets: if the sets are not
disjoint, intersectsSet returns true, otherwise it returns false.

See Also: isEqualToSet, isSubsetOfSet

isEqualToSet

public boolean isEqualToSet(NSSet otherSet)

Compares the receiving set to otherSet. If the contents of otherSet are equal to the contents of
the receiver, this method returns true. If not, it returns false.

Two sets have equal contents if they each have the same number of members and if each member
matches a member in the other set (as determined by equals).

See Also: intersectsSet, isSubsetOfSet

isSubsetOfSet

public boolean isSubsetOfSet(NSSet otherSet)

Returns true if every object in the receiver is also present in otherSet, false otherwise.

See Also: intersectsSet, isEqualToSet

C L A S S N S S e t

277

member

public Object member(Object anObject)

If anObject is present in the set (as determined by equals), the object in the set is returned.
Otherwise returns null.

mutableClone

public NSMutableSet mutableClone()

Returns a mutable set (an NSMutableSet) with the same members as the receiver.

objectEnumerator

public java.util.Enumeration objectEnumerator()

Returns an enumerator object that lets you access each object in the set

java.util.Enumeration enumerator = mySet.objectEnumerator();

while (enumerator.hasMoreElements()) {{
Object anObject = enumerator.nextElement();
/* code to act on each element */

}

When this method is used with mutable subclasses of NSSet, your code shouldn’t modify the set
during enumeration. If you intend to modify the set, use the allObjects method to create a
“snapshot” of the set’s members. Enumerate the snapshot, but make your modifications to the
original set.

objectsNoCopy

protected Object[] objectsNoCopy()

Returns the actual array of objects contained in the set.

278

C L A S S N S S e t

setByIntersectingSet

public NSSet setByIntersectingSet(NSSet otherSet)

Returns a set of objects that are in both the receiver and otherSet.

See Also: intersectsSet, isSubsetOfSet, isEqualToSet, setBySubtractingSet, setByUnioningSet

setBySubtractingSet

public NSSet setBySubtractingSet(NSSet otherSet)

Returns a set of objects that are in the receiver but not in otherSet.

See Also: intersectsSet, isSubsetOfSet, isEqualToSet, setByIntersectingSet, setByUnioningSet

setByUnioningSet

public NSSet setByUnioningSet(NSSet otherSet)

Returns a set of objects that are either in the receiver or in otherSet or both. If an object is in both,
the resulting set contains it only once.

See Also: intersectsSet, isSubsetOfSet, isEqualToSet, setByIntersectingSet, setBySubtractingSet

toString

public String toString()

Returns a string representation of the receiver. The string has the form “(object1, object2, ...)”.

279

C L A S S

NSSocketUtilities

Inherits from: Object

Package: com.webobjects.foundation

Class Description

This class provides an easy way to get a TCP socket with a connection timeout. The static
methods in this class correspond to all of the java.net.Socket constructors. See Sun’s
documentation for the java.net.Socket class for more information.

Calling getSocketWithTimeout will either return a socket, or will throw an IOException if it times out
(because a socket cannot be created). When a new socket is requested with getSocketWithTimeout,
the polling interval regulates how often that socket is requested. By default, the polling interval
is 100 milliseconds, and can be changed using setPollingInterval. A timeout argument is passed
to getSocketWithTimeout, and the socket request times out when a timer that keeps track of the total
polling time exceeds the timeout value.

This class only contains static methods. It is never instantiated.

280

C L A S S N S S o c k e t U t i l i t i e s

Method Types

All methods

getSocketWithTimeout

pollingInterval

setPollingInterval

Static Methods

getSocketWithTimeout

public static java.net.Socket getSocketWithTimeout(
String remoteHost,
int remotePort,
java.net.InetAddress localInetAddress,
int localPort,
int timeOut) throws java.net.UnknownHostException, java.io.IOException

Creates a socket and connects it to the port specified by remotePort at the host specified by
remoteHost. Binds the socket to the local port specified by localPort at the local host specified by
localInetAddress with a timeout specified by timeout. Throws an UnknownHostException if
remoteHost cannot be resolved. Throws an IOException if the socket can’t be created.

public static java.net.Socket getSocketWithTimeout(
String remoteHost,
int remotePort,
int timeout) throws java.net.UnknownHostException, java.io.IOException

Creates a socket and connects it to the port specified by remotePort at the host specified by
remoteHost with a timeout specified by timeout. Throws an UnknownHostException if remoteHost
cannot be resolved. Throws an IOException if the socket can’t be created.

C L A S S N S S o c k e t U t i l i t i e s

281

public static java.net.Socket getSocketWithTimeout(
InetAddress remoteAddress,
int remotePort,
int timeout) throws java.io.IOException

Creates a socket and connects it to the port specified by remotePort at the host specified by
remoteAddress with a timeout specified by timeout. Throws an IOException if the socket can’t be
created.

public static Socket getSocketWithTimeout(
InetAddress remoteAddress,
int remotePort,
InetAddress localAddress,
int localPort,
int timeout) throws java.io.IOException

Creates a socket and connects it to the port specified by remotePort at the host specified by
remoteAddress. Binds the socket to the local port specified by localPort at the local host specified by
localAddress with a timeout specified by timeout. Throws an IOException if the socket can’t be
created.

pollingInterval

public static int pollingInterval()

Returns the polling interval in milleseconds. The default polling interval is 100 milliseconds. It
can be changed with setPollingInterval. See the “Class Description” section for more information.

setPollingInterval

public static void setPollingInterval(int interval)

Sets the polling interval to interval provided interval is greater than 0. See the “Class Description”
section for more information.

282

C L A S S N S S o c k e t U t i l i t i e s

283

C L A S S

NSTimestamp

Inherits from: java.sql.Timestamp : java.util.Date : Object

Implements: NSCoding

Package: com.webobjects.foundation

Class Description

NSTimestamp objects represent a particular instance in time. NSTimestamp is a subclass of
java.sql.Timestamp, itself a subclass of java.util.Date. Unlike the NSGregorianDate class in
previous versions of the Foundation framework, NSTimestamp does not support calendar
functions. Refer to the table below to determine which classes to use to perform date operations
in WebObjects.

See the Sun’s documentation for the java.util.GregorianCalendar class for more information
about using calendars in Java.

Class Description

NSTimestamp Represents an instance in time

java.util.GregorianCalendar Represents a calendar date

NSTimeZone Represents a time zone

NSTimestampFormatter Converts NSTimestamps to strings and vice versa.

284

C L A S S N S T i m e s t a m p

Common Date Operations
For the following code segments, you need to import java.util.* to access Java’s date API.

To break up a NSTimestamp into its component year, month, day, hour, etc., you can convert it
into a java.util.GregorianCalendar and invoke its get method on the individual fields:

NSTimestamp myNSTimestamp;
GregorianCalendar myCalendar = new GregorianCalendar();
myCalendar.setTime(myNSTimestamp);
int year = myCalendar.get(GregorianCalendar.YEAR);
int dayOfMonth = myCalendar.get(GregorianCalendar.DAY_OF_MONTH);

To create an NSTimestamp based on its components, use java.util.GregorianCalendar:

NSTimeZone myTimeZone = new NSTimeZone(“EST”);
GregorianCalendar myCalendar = GregorianCalendar.getInstance(myTimeZone);
myCalendar.set(year,month,day,hours,minutes,seconds);
NSTimestamp myTimestamp = new NSTimestamp(myCalendar.getTime());

To add an offset in Gregorian units to an NSTimestamp, use the following code:

<<Please show me the best code to do this.>>

To create an NSTimestamp representing the current time, use the no-argument constructor:

NSTimestamp currentTime = new NSTimestamp();

The Enterprise Objects Framework expects dates to be represented as NSTimestamp objects. To
convert a java.util.Date to an NSTimestamp use:

NSTimestamp myNSTimestamp = new NSTimestamp(myJavaUtilDate);

Since NSTimestamp is a subclass of java.util.Date, you don’t need to convert an NSTimestamp
into a java.util.Date.

C L A S S N S T i m e s t a m p

285

Constants

NSTimestamp provides the following constants.

Interfaces Implemented

NSCoding

classForCoder

decodeObject

encodeWithCoder

Method Types

Constructors

NSTimestamp

Instance methods

compare

Constant Type Description

DistantFuture NSTimestamp An NSTimestamp that represents a date in the
distant future (in terms of centuries).

DistantPast NSTimestamp An NSTimestamp that represents a date in the
distant future (in terms of centuries).

286

C L A S S N S T i m e s t a m p

toString

Deprecated methods

currentTimeIntervalSinceReferenceDate

dayOfCommonEra

dayOfMonth

dayOfWeek

dayOfYear

distantFuture

distantPast

earlierTimestamp

gregorianUnitsSinceTimestamp

hourOfDay

laterTimestamp

microsecondOfSecond

millisecondsToTimeInterval

minuteOfHour

monthOfYear

secondOfMinute

timeIntervalSinceNow

timeIntervalSinceReferenceDate

timeIntervalSinceTimestamp

timeIntervalToMilliseconds

setDate

setHours

setMinutes

setMonth

setNanos

C L A S S N S T i m e s t a m p

287

setSeconds

setTime

setYear

timestampByAddingGregorianUnits

timestampByAddingTimeInterval

timeZone

yearOfCommonEra

Constructors

NSTimestamp

public NSTimestamp()

Creates an NSTimestamp representing the current time, accurate to the millisecond.

public NSTimestamp(java.sql.Timestamp date)

Creates an NSTimestamp object representing the same instant in time as date.

public NSTimestamp(java.util.Date date)

Creates an NSTimestamp object representing the same instant in time as date.

public NSTimestamp(long milliseconds)

Creates an NSTimestamp object representing the specified number of milliseconds since January
1, 1970, 00:00:00 GMT.

public NSTimestamp(
long milliseconds,
java.util.TimeZone timezone)

Creates an NSTimestamp object representing the specified number of milliseconds since January
1, 1970, 00:00:00 in the specified time zone.

288

C L A S S N S T i m e s t a m p

public NSTimestamp(
long milliseconds,
int nanoseconds)

Creates an NSTimestamp object representing the specified number of milliseconds since January
1, 1970, 00:00:00 GMT and sets the number of nanoseconds to nanoseconds.

public NSTimestamp(
long milliseconds,
int nanoseconds,
java.util.TimeZone timezone)

Creates an NSTimestamp object representing the specified number of milliseconds and
nanoseconds since January 1, 1970, 00:00:00 in the specified time zone.

public NSTimestamp(
long milliseconds,
NSTimestamp timestamp)

Creates an NSTimestamp object representing the specified number of milliseconds after the time
specified by timestamp.

public NSTimestamp(
int year,
int month,
int day,
int hours,
int minutes,
int seconds,
java.util.TimeZone timezone)

Deprecated in the Java Foundation framework. Don’t use this method. See the “Common Date
Operations” (page 284) for information on how to create a NSTimestamp based on its
components.

Creates an NSTimestamp object representing the specified year, month, day, hours, minutes,
and seconds in the specified time zone.

C L A S S N S T i m e s t a m p

289

Static Methods

currentTimeIntervalSinceReferenceDate

public static long currentTimeIntervalSinceReferenceDate()

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the number of milliseconds between the system’s absolute reference date (the first
instant of 1 January 1970, GMT) and the current date and time.

decodeObject

public static Object decodeObject(NSCoder coder)

Creates a NSTimestamp from data in coder.

See Also: NSCoding

distantFuture

public static NSTimestamp distantFuture()

Deprecated in the Java Foundation framework. Don’t use this method. Use the constant
DistantFuture instead.

Creates and returns an NSTimestamp that represents a date many centuries in the future. You
can pass this value where an NSTimestamp is required to have the date argument essentially
ignored. For example, the NSLock method tryLock(NSTimeStamp) returns false if the receiver fails to
acquire the lock before the specified date. You can use the object returned by distantFuture as the
date argument to wait indefinitely to acquire the lock.

290

C L A S S N S T i m e s t a m p

distantPast

public static NSTimestamp distantPast()

Deprecated in the Java Foundation framework. Don’t use this method. Use the constant
DistantPast instead.

Creates and returns an NSTimestamp that represents a date many centuries in the past. You can
use this object in your code as a control date, a guaranteed temporal boundary.

millisecondsToTimeInterval

public static long millisecondsToTimeInterval(long milliseconds)

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the time interval in seconds corresponding to the specified time represented in
milliseconds. Any fractional part of a second is truncated.

timeIntervalToMilliseconds

public static long timeIntervalToMilliseconds(long timeInterval)

Deprecated in the Java Foundation framework. Don’t use this method.

Returns a time interval in milliseconds corresponding to the specified time interval represented
in seconds.

Instance Methods

classForCoder

public Class classForCoder()

Conformance to NSCoding. See the method description of classForCoder in the interface
specification for NSCoding.

C L A S S N S T i m e s t a m p

291

compare

public int compare(NSTimestamp timestamp)

Returns an integer indicating whether the receiver is before, after, or the same as timestamp. If the
receiver is before timestamp, this method returns NSComparator.OrderedAscending. If the
receiver is after timestamp, this method returns NSComparator.OrderedDescending. If the dates
match, this method returns NSComparator.OrderedSame.

dayOfCommonEra

public int dayOfCommonEra()

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the number of days since the beginning of the Common Era. The base year of the
Common Era is 1 C.E. (which is the same as 1 A.D.).

dayOfMonth

public int dayOfMonth()

Deprecated in the Java Foundation framework. Don’t use this method. See the“Class
Description” (page 283) for NSTimestamp for an alternative.

Returns a number that indicates the day of the month (1 through 31) of the receiver.

dayOfWeek

public int dayOfWeek()

Deprecated in the Java Foundation framework. Don’t use this method. See the“Class
Description” (page 283) for NSTimestamp for an alternative.

Returns a number that indicates the day of the week (0 through 6) of the receiver; 0 indicates
Sunday.

292

C L A S S N S T i m e s t a m p

dayOfYear

public int dayOfYear()

Deprecated in the Java Foundation framework. Don’t use this method. See the“Class
Description” (page 283) for NSTimestamp for an alternative.

Returns a number that indicates the day of the year (1 through 366) of the receiver.

earlierTimestamp

public NSTimestamp earlierTimestamp(NSTimestamp timestamp)

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the receiver or timestamp, whichever is earlier.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding. See the method description of encodeWithCoder in the interface
specification for NSCoding.

gregorianUnitsSinceTimestamp

public void gregorianUnitsSinceTimestamp(
NSTimestamp.IntRef years,
NSTimestamp.IntRef months,
NSTimestamp.IntRef days,
NSTimestamp.IntRef hours,
NSTimestamp.IntRef minutes,
NSTimestamp.IntRef seconds,
NSTimestamp timestamp)

Deprecated in the Java Foundation framework. Don’t use this method. See the“Class
Description” (page 283) for NSTimestamp for an alternative.

Computes the time difference in calendar units between the receiver and timestamp and returns it
in years, months, days, hours, minutes, and seconds.

NSTimestamp.IntRef is a local class that contains a single element: the integer value.

C L A S S N S T i m e s t a m p

293

You can choose any representation you wish for the time difference by passing null for the
arguments you want to ignore. For example, the following code fragment computes the
difference in months, days, and years between two dates:

NSTimestamp momsBDay =
new NSTimestamp(1936, 1, 8, 7, 30, 0, java.util.TimeZone.getTimeZone(“EST”));

NSTimestamp dateOfBirth =
new NSTimestamp(1965, 12, 7, 17, 25, 0, new NSTimeZone(“EST”));

NSTimestamp.IntRef years = new NSTimestamp.IntRef();
NSTimestamp.IntRef months = new NSTimestamp.IntRef();
NSTimestamp.IntRef days = new NSTimestamp.IntRef();

dateOfBirth.gregorianUnitsSinceTimestamp(momsBDay, years, months, days,
null, null, null)

This message returns 29 years, 10 months, and 29 days. If you want to express the years in terms
of months, you pass null for the years argument:

dateOfBirth.gregorianUnitsSinceTimestamp(momsBDay, null, months, days,
null, null, null);

This message returns 358 months and 29 days.

hourOfDay

public int hourOfDay()

Deprecated in the Java Foundation framework. Don’t use this method. See the“Class
Description” (page 283) for NSTimestamp for an alternative.

Returns the hour value (0 through 23) of the receiver. On Daylight Savings “fall back” days, a
value of 1 is returned for two consecutive hours, but with a different time zone (the first in
daylight savings time and the second in standard time).

laterTimestamp

public NSTimestamp laterTimestamp(NSTimestamp timestamp)

Deprecated in the Java Foundation framework. Don’t use this method.

294

C L A S S N S T i m e s t a m p

Returns the receiver or timestamp, whichever is later.

microsecondOfSecond

public int microsecondOfSecond()

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the microseconds value (0 through 999,999) of the receiver.

minuteOfHour

public int minuteOfHour()

Deprecated in the Java Foundation framework. Don’t use this method. See the“Class
Description” (page 283) for NSTimestamp for an alternative.

Returns the minutes value (0 through 59) of the receiver.

monthOfYear

public int monthOfYear()

Deprecated in the Java Foundation framework. Don’t use this method. See the“Class
Description” (page 283) for NSTimestamp for an alternative. Note that java.util.Calendar represents
months as integers from 0 to 11.

Returns a number that indicates the month of the year (1 through 12) of the receiver.

secondOfMinute

public int secondOfMinute()

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the seconds value (0 through 59) of the receiver. See the“Class Description” (page 283)
for NSTimestamp for an alternative.

C L A S S N S T i m e s t a m p

295

setDate

public void setDate(int date)

Deprecated in the Java Foundation framework. Don’t use this method. NSTimestamp objects are
immutable.

setHours

public void setHours(int hours)

Deprecated in the Java Foundation framework. Don’t use this method. NSTimestamp objects are
immutable.

setMinutes

public void setMinutes(int minutes)

Deprecated in the Java Foundation framework. Don’t use this method. NSTimestamp objects are
immutable.

setMonth

public void setMonth(int month)

Deprecated in the Java Foundation framework. Don’t use this method. NSTimestamp objects are
immutable.

setNanos

public void setNanos(int nanoseconds)

Deprecated in the Java Foundation framework. Don’t use this method. NSTimestamp objects are
immutable.

296

C L A S S N S T i m e s t a m p

setSeconds

public void setSeconds(int seconds)

Deprecated in the Java Foundation framework. Don’t use this method. NSTimestamp objects are
immutable.

setTime

public void setTime(long milliseconds)

Deprecated in the Java Foundation framework. Don’t use this method. NSTimestamp objects are
immutable.

setYear

public void setYear(int year)

Deprecated in the Java Foundation framework. Don’t use this method. NSTimestamp objects are
immutable.

timeIntervalSinceNow

public long timeIntervalSinceNow()

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the number of milliseconds between the receiver’s time and the current system time.
This value is negative if the receiver’s time is earlier than the current system time.

timeIntervalSinceReferenceDate

public long timeIntervalSinceReferenceDate()

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the number of milliseconds between the receiver’s time and the reference date (January
1, 1970, 00:00 GMT). This value is negative if the receiver’s time is earlier than the reference date.

C L A S S N S T i m e s t a m p

297

timeIntervalSinceTimestamp

public long timeIntervalSinceTimestamp(NSTimestamp time)

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the number of milliseconds between the receiver’s time and time. This value is negative
if the receiver’s time is earlier than time.

timestampByAddingGregorianUnits

public NSTimestamp timestampByAddingGregorianUnits(
int year,
int month,
int day,
int hour,
int minute,
int second)

Deprecated in the Java Foundation framework. Don’t use this method.

Returns an NSTimestamp that is updated with the year, month, day, hour, minute, and second offsets
specified as arguments. The offsets can be positive (future) or negative (past). This method
preserves “clock time” across changes in Daylight Savings Time zones and leap years. For
example, adding one month to an NSTimestamp with a time of 12 noon correctly maintains time
at 12 noon.

The following code fragment shows an NSTimestamp created with a date a week later than an
existing NSTimestamp.

NSTimestamp now = new NSTimestamp();
NSTimestamp nextWeek =

now.timestampByAddingGregorianUnits(0, 0, 7, 0, 0, 0);

timestampByAddingTimeInterval

public NSTimestamp timestampByAddingTimeInterval(long timeInterval)

Deprecated in the Java Foundation framework. Don’t use this method.

Returns an NSTimestamp with the specified time interval in milliseconds added to the receiver’s
time.

298

C L A S S N S T i m e s t a m p

timeZone

public java.util.TimeZone timeZone()

Deprecated in the Java Foundation framework. Don’t use this method.

Returns the time zone object associated with the receiver. You can explicitly set the time zone to
an java.util.TimeZone object using a constructor that takes an java.util.TimeZone object as an
argument. If you do not specify a time zone for an object at initialization time, NSTimestamp
uses the default time zone for the locale.

toString

public String toString()

Returns a string representation of the receiver in the form:
“YYYY/MM/DD HH:MM:SS TimeZone”.

yearOfCommonEra

public int yearOfCommonEra()

Deprecated in the Java Foundation framework. Don’t use this method. See the“Class
Description” (page 283) for NSTimestamp for an alternative.

Returns a number that indicates the year, including the century, of the receiver (for example,
1995). The base year of the Common Era is 1 C.E. (which is the same as 1 A.D).

299

C L A S S

NSTimestampFormatter

Inherits from: java.text.Format : Object

Package: com.webobjects.foundation

Class Description

Instances of NSTimestampFormatter format NSTimestamps into their textual representations
and convert textual representations of dates and times into NSTimestamps. You can express the
representation of dates and times very flexibly: “Thu 22 Dec 1994” is just as acceptable as “12/
22/94”.

You can associate an date pattern with a WOString or WOTextField dynamic element.
WebObjects uses an NSTimestampFormatter object to perform the appropriate conversions.

You can also create an NSTimestampFormatter with the constructor, provide a date pattern
string, and use java.text.Format’s format and parseObject methods to convert between
NSTimestamps and their textual representations:

NSTimestampFormatter formatter = new NSTimestampFormatter(“%m/%d/%y”);
String description = formatter.format(myNSTimestamp);

NSTimestampFormatter formatter = new NSTimestampFormatter(“%m/%d/%y”);
NSTimestamp myNSTimestamp = formatter.parseObject(myTimestampString);

Instances of NSTimestampFormatter are immutable.

300

C L A S S N S T i m e s t a m p F o r m a t t e r

The Calendar Pattern
You must specify a pattern whenever you create a NSTimestampFormatter. This pattern is a
string that contains specifiers that are very similar to those used in the standard C library
function strftime(). When NSTimestampFormatter converts a date to a string, it uses this
pattern.

The date conversion specifiers cover a range of date conventions:

 Specifier Description

%% a '%' character

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c shorthand for "%X %x", the locale format for date and time

%d day of the month as a decimal number (01-31)

%e same as %d but does not print the leading 0 for days 1 through
9

%F milliseconds as a decimal number (000-999)

%H hour based on a 24-hour clock as a decimal number (00-23)

%I hour based on a 12-hour clock as a decimal number (01-12)

%j day of the year as a decimal number (001-366)

%m month as a decimal number (01-12)

%M minute as a decimal number (00-59)

%p AM/PM designation for the locale

%S second as a decimal number (00-59)

%w weekday as a decimal number (0-6), where Sunday is 0

%x date using the date representation for the locale

C L A S S N S T i m e s t a m p F o r m a t t e r

301

Alternatively, you can specify the pattern using Sun’s date pattern specifiers. See Sun’s
documentation for the java.text.SimpleDateFormat class for more information.

Converting Date Strings Without Time Zones
When you convert a string without a time zone specification to an NSTimestamp, the formatter
assumes the time zone is the default parse time zone (see the defaultParseTimeZone and
setDefaultParseTimeZone methods). An analogous time zone, called the default format time zone, is
used when converting an NSTimestamp without a time zone to a string.

Sometimes you need to give the user a choice of time zones. For example, you might put the time
zones in a pull-down list. In such cases, you can use the parseObjectInUTC method to parse a date
string for the UTC time zone. The following code shows how you can compute the offset from
UTC for the particular time zone the user chooses and add it to the parsed timestamp:

NSTimestamp date = (NSTimestamp)myFormatter.parseInUTC(myString);
NSTimeZone tz = NSTimeZone.timeZoneWithName(myTimeZoneName);
int offset = tz.secondsFromGMTForTimestamp(date);
long milliseconds = date.getTime() - offset * 1000;
NSTimestamp dateWithTimeZone = new NSTimestamp(milliseconds);

%X time using the time representation for the locale

%y year without century (00-99)

%Y year with century (such as 1990)

%Z time zone name (such as Pacific Daylight Time)

%z time zone offset in hours and minutes from GMT (HHMM)

 Specifier Description

302

C L A S S N S T i m e s t a m p F o r m a t t e r

Constructors

NSTimestampFormatter

public NSTimestampFormatter()

Creates a NSTimestampFormatter with the default pattern (%m/%d/%y).

public NSTimestampFormatter(String pattern)

Creates an NSTimestampFormatter with the pattern string pattern. If pattern is null, this
constructor uses the default pattern (%m/%d/%y). See “The Calendar Pattern” (page 300) for more
information on specifying the pattern string.

public NSTimestampFormatter(String pattern,
java.text.DateFormatSymbols formatSymbols)

Creates an NSTimestampFormatter with the specified pattern using the specified date format
symbols. If pattern is null, this constructor uses the default pattern (%m/%d/%y) with the slashes
replaced by the appropriate date symbol. See “The Calendar Pattern” (page 300) for more
information on specifying the pattern string.

public NSTimestampFormatter(String pattern,
java.util.Locale locale)

Creates an NSTimestampFormatter with the specified pattern using the date symbols for the
specified locale. If pattern is null, this constructor uses the default pattern (%m/%d/%y) with the
slashes (“/”) replaced by the appropriate date symbol. See “The Calendar Pattern” (page 300)
for more information on specifying the pattern string.

C L A S S N S T i m e s t a m p F o r m a t t e r

303

Instance Methods

defaultFormatTimeZone

public NSTimeZone defaultFormatTimeZone()

Returns the default time zone the receiver uses for formatting (converting an NSTimestamp into
a string). If the default format time zone is not null, the receiver uses the default format time zone
when it performs the conversion. Otherwise the receiver uses the time zone of the NSTimestamp
that it is converting. The default format time zone itself defaults to null.

See Also: defaultParseTimeZone

defaultParseTimeZone

public synchronized NSTimeZone defaultParseTimeZone()

Returns the default time zone the receiver uses for parsing (converting a string to an
NSTimestamp). During the conversion, if the NSTimestamp has a time zone (its timeZone method
returns something other than null), the receiver uses the NSTimestamp’s time zone. Otherwise
the receiver uses the default parse time zone. The default parse time zone itself defaults to the
time zone specified by the user.timezone system property.

See Also: defaultFormatTimeZone

format

public StringBuffer format(
Object object,
StringBuffer toAppendTo,
java.text.FieldPosition position)

Formats object to produce a string, appends the string to toAppendTo, and returns the resulting
StringBuffer. The position parameter specifies an alignment field to place the formatted object.
When the method returns, this parameter contains the position of the alignment field. See Sun’s
java.text.Format documentation for more information.

304

C L A S S N S T i m e s t a m p F o r m a t t e r

parseObjectInUTC

public Object parseObjectInUTC(
String source,
java.text.ParsePosition status)

Parses a string to produce an object using UTC as the time zone. This method ignores the time
zone specified by the string and the value of the parse time zone. For parameter definitions, see
Sun’s java.text.Format documentation for the parseObject method.

See Also: parseObject

parseObject

public Object parseObject(
String source,
java.text.ParsePosition status)

Parses a string to produce an object. If the string does not specify a time zone, uses the default
parse time zone. See Sun’s java.text.Format documentation for more information.

See Also: setDefaultParseTimeZone

pattern

public String pattern()

Returns the receiver’s pattern. See “The Calendar Pattern” (page 300) for more information
about the pattern.

setDefaultFormatTimeZone

public synchronized void setDefaultFormatTimeZone(NSTimeZone timeZone)

Sets the default time zone the receiver uses for formatting (converting an NSTimestamp into a
string) to timeZone.

See Also: setDefaultParseTimeZone

C L A S S N S T i m e s t a m p F o r m a t t e r

305

setDefaultParseTimeZone

public synchronized void setDefaultParseTimeZone(NSTimeZone timeZone)

Sets the default time zone the receiver uses for parsing (converting a string to an NSTimestamp)
to timeZone.

See Also: setDefaultFormatTimeZone

setPattern

public synchronized void setPattern(String pattern)

Sets the receiver’s pattern to pattern. See “The Calendar Pattern” (page 300) for more information
about the pattern.

toString

public String toString()

Returns a string representation of the receiver that includes the default format time zone, the
default parse time zone, and the pattern.

See Also: defaultFormatTimeZone, defaultParseTimeZone, pattern

306

C L A S S N S T i m e s t a m p F o r m a t t e r

307

C L A S S

NSTimestamp.IntRef

Inherits from: Object

Package: com.webobjects.foundation

Class Description

Deprecated in the Java Foundation framework. NSTimestamp.IntRef objects act as a containers
to hold the values returned by NSTimestamp’s gregorianUnitsSinceTimestamp method and consist
solely of an instance variable, value. See the gregorianUnitsSinceTimestamp deprecated method
description in the NSTimestamp class specification for more information about using this class.

Constructors

NSTimestamp.IntRef

public NSTimestamp.IntRef()

Description forthcoming.

308

C L A S S N S T i m e s t a m p . I n t R e f

Instance Methods

toString

public String toString()

Returns a String representation of the receiver.

309

C L A S S

NSTimeZone

Inherits from: java.util.TimeZone : Object

Implements: Cloneable
Serializable
NSCoding

Package: com.webobjects.foundation

Class Description

NSTimeZone defines the behavior of time zone objects. Time zone objects represent geopolitical
regions. Consequently, these objects have names for these regions. Time zone objects also
represent a temporal offset, either plus or minus, from Greenwich Mean Time (GMT) and an
abbreviation (such as “PST”).

NSTimeZone provides several constructors to get time zone objects. The class also permits you
to set the default time zone within your application (setDefaultTimeZone). You can access this
default time zone at any time with the defaultTimeZone static method, and with the localTimeZone
static method, you can get a relative time zone object that decodes itself to become the default
time zone for any locale in which it finds itself.

Because NSTimeZone is a subclass of java.util.TimeZone, you can also use the
java.util.TimeZone API with NSTimeZones.

310

C L A S S N S T i m e Z o n e

WARNINGNSTimeZone is only intended to be used with
NSTimestamp and NSTimestampFormatter. It produces incorrect
results when used with Java’s date-related classes.

Some NSTimestamp methods return date objects that are automatically bound to time zone
objects. These date objects use the functionality of NSTimeZone to adjust dates for the proper
locale. Unless you specify otherwise, objects returned from NSTimestamp are bound to the
default time zone for the current locale.

Interfaces Implemented

Cloneable

clone

java.io.Serializable

NSCoding

decodeObject

classForCoder

encodeWithCoder

Method Types

Constructors

NSTimeZone

Getting the default time zone

localTimeZone

defaultTimeZone

setDefaultTimeZone

C L A S S N S T i m e Z o n e

311

resetSystemTimeZone

Getting time zone information

abbreviationDictionary

knownTimeZoneNames

Getting information about a specific time zone

abbreviation

abbreviationForTimestamp

name

secondsFromGMT

secondsFromGMTForTimestamp

isDaylightSavingTime

isDaylightSavingTimeForTimestamp

data

Comparing time zones

equals

isEqualToTimeZone

Instance methods inherited from java.util.TimeZone

getAvailableIDs

getDefault

getDisplayName

getID

getOffset

getRawOffset

hasSameRules

inDaylightTime

setDefault

setID

312

C L A S S N S T i m e Z o n e

setRawOffset

useDaylightTime

Constructors

NSTimeZone

public NSTimeZone()

This constructor is used internally to implement the java.io.Serializable and
java.io.Externalizable interfaces and should be considered private. Use the static factory
methods to create time zones.

protected NSTimeZone(
String aTimeZoneName,
NSData data)

This constructor is used internally by NSTimeZone and should be considered private. Use the
static factory methods to create time zones.

Static Methods

abbreviationDictionary

public static NSDictionary abbreviationDictionary()

Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

More than one time zone may have the same abbreviation. For example, US/Pacific and
Canada/Pacific both use the abbreviation “PST.” In these cases abbreviationDictionary chooses a
single name to map the abbreviation to.

C L A S S N S T i m e Z o n e

313

decodeObject

public static Object decodeObject(NSCoder coder)

Creates and returns an NSTimeZone from the data in coder.

See Also: NSCoding Interface Description

defaultTimeZone

public static synchronized NSTimeZone defaultTimeZone()

Returns the default time zone set for your application. If no default time zone has been set, this
method invokes systemTimeZone and returns the system time zone.

See Also: localTimeZone, setDefaultTimeZone, systemTimeZone

getAvailableIDs

public static String[] getAvailableIDs()

See the method description for getAvailableIDs in the java.util.TimeZone class specification.

getDefault

public static java.util.TimeZone getDefault()

See the method description for getDefault in the java.util.TimeZone class specification.

knownTimeZoneNames

public static NSArray knownTimeZoneNames()

Returns an array of strings listing the names of all the time zones known to the system.

314

C L A S S N S T i m e Z o n e

localTimeZone

public static NSTimeZone localTimeZone()

Returns an object that forwards all messages to the default time zone for your application. This
behavior is particularly useful for NSTimestamp objects that are archived or sent as Distributed
Objects and may be interpreted in different locales.

See Also: defaultTimeZone, setDefaultTimeZone

resetSystemTimeZone

public static synchronized void resetSystemTimeZone()

Clears the previously determined system time zone, if any. Subsequent calls to systemTimeZone will
attempt to redetermine the system time zone.

setDefault

public static synchronized void setDefault(java.util.TimeZone zone)

See the method description for setDefault in the java.util.TimeZone class specification.

setDefaultTimeZone

public static synchronized void setDefaultTimeZone(NSTimeZone aTimeZone)

Sets the time zone appropriate for your application. There can be only one default time zone, so
by setting a new default time zone, you lose the previous one.

See Also: defaultTimeZone, localTimeZone

systemTimeZone

public static synchronized NSTimeZone systemTimeZone()

Returns the time zone currently used by the system. If it can’t figure out the current time zone,
returns the GMT time zone.

C L A S S N S T i m e Z o n e

315

timeZoneForSecondsFromGMT

public static synchronized NSTimeZone timeZoneForSecondsFromGMT(int seconds)

Returns a time zone object with seconds offset from Greenwich Mean Time. The name of the new
time zone is GMT +/- the offset, in hours and minutes. Time zones created with this never have
daylight savings and the offset is constant no matter the date; the name and abbreviation do
NOT follow the POSIX convention of minutes-west.

See Also: timeZoneWithName

timeZoneWithName

public static synchronized NSTimeZone timeZoneWithName(
String aTimeZoneName,
boolean trybbreviation)

Returns the time zone object identified by the name aTimeZoneName. If tryAbbreviation is false, this
method searches the time zone information directory for matching names. If tryAbbreviation is
true, this method attempts to resolve the abbreviation to a name using the abbreviation
dictionary. Returns null if there is no match on the name.

See Also: timeZoneForSecondsFromGMT, knownTimeZoneNames

timeZoneWithNameAndData

public static synchronized NSTimeZone timeZoneWithNameAndData(
String aTimeZoneName,
NSData data)

Returns the time zone with the name aTimeZoneName whose data has been initialized using the
contents of data. You should not call this method directly—use timeZoneWithName instead.

316

C L A S S N S T i m e Z o n e

Instance Methods

abbreviation

public String abbreviation()

Returns the abbreviation for the time zone, such as “EDT” (Eastern Daylight Time). Invokes
abbreviationForTimestamp with the current date as the argument.

abbreviationForTimestamp

public String abbreviationForTimestamp(NSTimestamp aTimestamp)

Returns the abbreviation for the time zone object at the date specified by aTimestamp. Note that the
abbreviation may be different at different dates. For example, during Daylight Savings Time the
US/Eastern time zone has an abbreviation of “EDT.” At other times, its abbreviation is “EST.”

classForCoder

public Class classForCoder()

Conformance to NSCoding.

See Also: classForCoder (NSCoding)

clone

public Object clone()

Simply returns the receiver. Since NSArrays are immutable, there’s no need to make an actual
clone.

C L A S S N S T i m e Z o n e

317

data

public NSData data()

Returns the data that stores the information used by the time zone. This data should be treated
as an opaque object.

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Conformance to NSCoding. See the method description for encodeWithCoder in the NSCoding
interface specification.

equals

public boolean equals(Object anObject)

Returns true if anObject is an NSTimeZone and its contents are equal to the receiver’s or false
otherwise. If you know that anObject is an NSTimestamp, use the more efficient method
isEqualToTimeZone instead.

getDisplayName

public String getDisplayName(
boolean daylight,
int style,
java.util.Locale locale)

Returns the name of the equivalent java.util.SimpleTimeZone if one exists. Otherwise returns
the receiver’s geopolitical region name.

getID

public String getID()

Returns the receiver’s geopolitical region name.

318

C L A S S N S T i m e Z o n e

getOffset

public int getOffset(
int era,
int year,
int month,
int day,
int dayOfWeek,
int milliseconds)

See the method description for getOffset in the java.util.TimeZone class specification.

getRawOffset

public int getRawOffset()

See the method description for getRawOffset in the java.util.TimeZone class specification. For
NSTimeZones, this method always returns 0.

hashCode

public synchronized int hashCode()

See the method description for hashCode in the Object class specification.

hasSameRules

public boolean hasSameRules(java.util.TimeZone other)

Returns true if other is the same as the receiver (as determined by equals.).

inDaylightTime

public boolean inDaylightTime(java.util.Date date)

See the method description for inDaylightTime in the java.util.TimeZone class specification.

C L A S S N S T i m e Z o n e

319

isDaylightSavingTime

public boolean isDaylightSavingTime()

Returns true if the time zone is currently using Daylight Savings Time. This method invokes
isDaylightSavingTimeForTimestamp with the current date as the argument.

isDaylightSavingTimeForTimestamp

public boolean isDaylightSavingTimeForTimestamp(NSTimestamp aTimestamp)

Returns true if the time zone uses Daylight Savings Time at the date specified by aTimestamp.

isEqualToTimeZone

public boolean isEqualToTimeZone(NSTimeZone aTimeZone)

Returns true if aTimeZone and the receiving time zone have the same name and data.

name

public String name()

Returns the geopolitical region name that identifies the time zone.

readExternal

public void readExternal(java.io.ObjectInput input)
throws java.io.IOException,ClassNotFoundException

Description forthcoming.

readResolve

public Object readResolve() throws java.io.ObjectStreamException

Conformance to java.io.Serializable.

320

C L A S S N S T i m e Z o n e

secondsFromGMT

public int secondsFromGMT()

Returns the current difference in seconds between the time zone and Greenwich Mean Time.

secondsFromGMTForTimestamp

public int secondsFromGMTForTimestamp(NSTimestamp aTimestamp)

Returns the difference in seconds between the time zone and Greenwich Mean Time at the date
specified by aTimestamp. This may be different from the current difference if the time zone changes
its offset from GMT at different points in the year—for example, the U.S. time zones change with
daylight savings time.

setID

public void setID(String ID)

Throws an IllegalStateException because NSTimeZones are immutable.

setRawOffset

public void setRawOffset(int offsetMillis)

Throws an IllegalStateException because NSTimeZones are immutable.

toString

public String toString()

Returns a string representation of the receiver that indicates the receiver’s name, the receiver’s
current offset from GMT, and whether the receiver is currently using Daylight Savings Time.

useDaylightTime

public boolean useDaylightTime()

See the method description for useDaylightTime in the java.util.TimeZone class specification.

C L A S S N S T i m e Z o n e

321

writeExternal

public void writeExternal(
java.io.ObjectOutput output) throws java.io.IOException

Description forthcoming.

Notifications

SystemTimeZoneDidChangeNotification

public static final String SystemTimeZoneDidChangeNotification;

322

C L A S S N S T i m e Z o n e

323

C L A S S

NSUndoManager

Inherits from: Object

Implements: NSDisposable
Serializable

Package: com.webobjects.foundation

Class Description

NSUndoManager is a general-purpose recorder of operations for undo and redo. You register
an undo operation by specifying the object that’s changing (or the owner of that object), along
with a method to invoke to revert its state, and the arguments for that method. NSUndoManager
groups all operations within a single cycle of the run loop, so that performing an undo reverts
all changes that occurred during the loop. Also, when performing undo an NSUndoManager
saves the operations reverted so that you can redo the undos.

NSUndoManager is implemented as a class of the Foundation framework because executables
other than applications might want to revert changes to their states. For example, you might
have an interactive command-line tool with undo and redo commands. However, users
typically see undo and redo as application features. WebObjects applications can use
NSUndoManagers to undo and redo user operations. Typically a session’s editing context has
an undo manager that provides undo and redo operations on enterprise objects. For more
information, see the class specification for EOEditingContext (eocontrol package).

324

C L A S S N S U n d o M a n a g e r

Operations and Groups
An undo operation is a method for reverting a change to an object, along with the arguments
needed to revert the change (for example, its state before the change). Undo operations are
typically collected in undo groups, which represent whole revertible actions, and are stored on
a stack. Redo operations and groups are simply undo operations stored on a separate stack
(described below). When an NSUndoManager performs undo or redo, it’s actually undoing or
redoing an entire group of operations. For example, a user could change the first name and the
last name of an employee. An application might package both operations as a group, so when
the user chooses Undo, both the first and last names are reverted. To undo a single operation,
the operation must be packaged alone in a group.

NSUndoManager normally creates undo groups automatically during the run loop. The first
time it’s asked to record an undo operation in the run loop, it creates a new group. Then, at the
end of the loop, it closes the group. You can create additional, nested undo groups within these
default groups using the beginUndoGrouping and enableUndoRegistration methods. You can also turn off
the default grouping behavior using setGroupsByEvent.

The Undo and Redo Stacks
Undo groups are stored on a stack, with the oldest groups at the bottom and the newest at the
top. The undo stack is unlimited by default, but you can restrict it to a maximum number of
groups using the setLevelsOfUndo method. When the stack exceeds the maximum, the oldest undo
groups are dropped from the bottom.

Initially, both stacks are empty. Recording undo operations adds to the undo stack, but the redo
stack remains empty until an undo is performed. Performing an undo causes the reverting
operations in the latest group to be applied to their objects. Since these operations cause changes
to the objects’ states, the objects presumably register new operations with the NSUndoManager,
this time in the reverse direction from the original operations. Since the NSUndoManager is in
the process of performing undo, it records these operations as redo operations on the redo stack.
Consecutive undos add to the redo stack. Subsequent redo operations pull the operations off the
redo stack, apply them to the objects, and push them back onto the undo stack.

The redo stack’s contents last as long as undo and redo are performed successively. However,
because applying a new change to an object invalidates the previous changes, as soon as a new
undo operation is registered, the redo stack is cleared. This prevents redo from returning objects
to an inappropriate prior state. You can check for the ability to undo and redo with the canUndo
and canRedo methods.

C L A S S N S U n d o M a n a g e r

325

Registering Undo Operations
To add an undo operation to the undo stack, you must register it with the object that will
perform the undo operation. To register the undo operation you specify a selector with a single
object argument. When an object changes, the object itself (or another object acting on its behalf)
records its attributes prior to the change in the argument object. (This argument is frequently an
NSDictionary object, but it can be any object.) Performing the undo then involves resetting the
object with these attributes.

To record a simple undo operation, you need only invoke registerUndoWithTarget, giving the object
to be sent the undo operation selector, the selector to invoke, and an argument to pass with that
message. The target object is usually not the actual object whose state is changing; instead, it’s
the client object, a document or container that holds many undoable objects. The argument is an
object that captures the state of the object before the change is made. If you have multiple
arguments, use registerUndoWithTargetAndArguments.

In most applications a single instance of NSUndoManager belongs to an object that contains or
manages other objects. This is particularly the case with document-based applications, where a
single object is responsible for all undo and redo operations for a document. An object such as
this is often called the NSUndoManager’s client. Each client object has its own NSUndoManager.
The client claims exclusive right to alter its undoable objects so that it can record undo operations
for all changes. In the specific case of documents, this scheme keeps each pair of undo and redo
stacks separate so that when an undo is performed, it applies to the focal document in the
application (typically the one displayed in the key window). It also relieves the individual
objects in a document from having to know the identity of their NSUndoManager or from
having to track changes to themselves.

However, an object that is changed can have its own NSUndoManager and perform its own
undo and redo operations. For example, you could have a custom view that displays images
dragged into it; with each successful drag operation, it registers a new undo group. If the view
is then selected (that is, made first responder) and the Undo command applied, the previously
displayed image would be redisplayed.

Performing Undo and Redo
Performing undo and redo is usually as simple as sending undo and redo messages to the
NSUndoManager. undo closes the last open undo group and then applies all the undo operations
in that group (recording any undo operations as redo operations instead). redo likewise applies
all the redo operations on the top redo group.

326

C L A S S N S U n d o M a n a g e r

undo is intended for undoing top-level groups, and shouldn’t be used for nested undo groups. If
any unclosed, nested undo groups are on the stack when undo is invoked, it throws an exception.
To undo nested groups, you must explicitly close the group with an enableUndoRegistration
message, then use undoNestedGroup to undo it. Note also that if you turn off automatic grouping by
event with setGroupsByEvent, you must explicitly close the current undo group with
enableUndoRegistration before invoking either undo method.

Undo Notifications
An NSUndoManager regularly posts checkpoint notifications to synchronize the inclusion of
undo operations in undo groups. Objects sometimes delay performing changes, for various
reasons. This means they may also delay registering undo operations for those changes. Because
NSUndoManager collects individual operations into groups, it must be sure to synchronize its
client with the creation of these groups so that operations are entered into the proper undo
groups. To this end, whenever an NSUndoManager opens or closes a new undo group (except
when it opens a top-level group), it posts an CheckpointNotification so observers can apply their
pending undo operations to the group in effect. The NSUndoManager’s client should register
itself as an observer for this notification and record undo operations for all pending changes
upon receiving it.

NSUndoManager also posts a number of other notifications at specific intervals: when a group
is created, when a group is closed, and just before and just after both undo and redo operations.
For more on notifications, see “Notifications” (page 335).

Constants

NSUndoManager provides the following constant to specify the priority of closing an undo
group compared to other operations that take place after the current event ends. Undo groups
are automatically closed at the end of the event. The priority specified by this constant is lower
than the priority for an EOEditingContext to flush its changes.

Constant Type Description

UndoCloseGroupingRunLoopOrdering int Specifies the priority for closing the current
undo group compared to other operations in the
delayed callback queue.

C L A S S N S U n d o M a n a g e r

327

Interfaces Implemented

NSDisposable

dispose

Method Types

Registering undo operations

registerUndoWithTarget

registerUndoWithTargetAndArguments

Checking undo ability

canUndo

canRedo

Performing undo and redo

undo

undoNestedGroup

redo

Limiting the undo stack

setLevelsOfUndo

levelsOfUndo

Creating undo groups

beginUndoGrouping

endUndoGrouping

328

C L A S S N S U n d o M a n a g e r

setGroupsByEvent

groupsByEvent

groupingLevel

Disabling undo

disableUndoRegistration

enableUndoRegistration

isUndoRegistrationEnabled

Checking whether undo or redo is being performed

isUndoing

isRedoing

Clearing undo operations

removeAllActions

removeAllActionsWithTarget

Constructors

NSUndoManager

public NSUndoManager()

Creates an NSUndoManager object.

C L A S S N S U n d o M a n a g e r

329

Instance Methods

beginUndoGrouping

public void beginUndoGrouping()

Marks the beginning of an undo group. All individual undo operations before a subsequent
endUndoGrouping message are grouped together and reversed by a later undo message. By default
undo groups are begun automatically at the start of the event loop, but you can begin your own
undo groups with this method, and nest them within other groups.

This method posts an CheckpointNotification unless a top-level undo is in progress. It posts a
DidOpenUndoGroupNotification if a new group was successfully created.

canRedo

public boolean canRedo()

Returns true if the receiver has any actions to redo, false if it doesn’t.

Because any undo operation registered clears the redo stack, this method posts an
CheckpointNotification to allow clients to apply their pending operations before testing the redo
stack.

canUndo

public boolean canUndo()

Returns true if the receiver has any actions to undo, false if it doesn’t. This does not mean you
can safely invoke undo or undoNestedGroup—you may have to close open undo groups first.

See Also: enableUndoRegistration, registerUndoWithTarget

330

C L A S S N S U n d o M a n a g e r

disableUndoRegistration

public void disableUndoRegistration()

Disables the recording of undo operations, whether by registerUndoWithTarget or by
invocation-based undo. This method can be invoked multiple times by multiple clients.
enableUndoRegistration must be invoked an equal number of times to re-enable undo registration.

dispose

public void dispose()

Conformance to NSDisposable. See the method description of dispose in the interface
specification for NSDisposable.

enableUndoRegistration

public void enableUndoRegistration()

Enables the recording of undo operations. Because undo registration is enabled by default, it is
often used to balance a prior disableUndoRegistration message. Undo registration isn’t actually
re-enabled until an enable message balances the last disable message in effect. Throws an
IllegalStateException if invoked while no disableUndoRegistration message is in effect.

endUndoGrouping

public void endUndoGrouping()

Marks the end of an undo group. All individual undo operations back to the matching
beginUndoGrouping message are grouped together and reversed by a later undo or undoNestedGroup
message. Undo groups can be nested, thus providing functionality similar to nested
transactions. Throws an IllegalStateException if there’s no beginUndoGrouping message in effect.

This method posts an CheckpointNotification and an WillCloseUndoGroupNotification just before the
group is closed.

See Also: levelsOfUndo

C L A S S N S U n d o M a n a g e r

331

groupingLevel

public int groupingLevel()

Returns the number of nested undo groups (or redo groups, if Redo was last invoked) in the
current event loop. If zero is returned, there is no open undo or redo group.

See Also: levelsOfUndo, setLevelsOfUndo

groupsByEvent

public boolean groupsByEvent()

Returns true if the receiver automatically creates undo groups around each pass of the run loop,
false if it doesn’t. The default is true.

See Also: beginUndoGrouping

isRedoing

public boolean isRedoing()

Returns true if the receiver is in the process of performing its redo method, false otherwise.

isUndoRegistrationEnabled

public boolean isUndoRegistrationEnabled()

Returns whether the recording of undo operations is enabled. Undo registration is enabled by
default.

See Also: disableUndoRegistration, enableUndoRegistration

isUndoing

public boolean isUndoing()

Returns true if the receiver is in the process of performing an undo or undoNestedGroup, false
otherwise.

332

C L A S S N S U n d o M a n a g e r

levelsOfUndo

public int levelsOfUndo()

Returns the maximum number of top-level undo groups the receiver will hold. If ending the
current undo group will result in the number of groups exceeding this limit, the oldest groups
are dropped from the stack. A limit of zero indicates no limit, so old undo groups are never
dropped. The default is zero.

See Also: enableUndoRegistration, setLevelsOfUndo

redo

public void redo()

Performs the operations in the last group on the redo stack, if there are any, recording them on
the undo stack as a single group. Throws an IllegalStateException if the method is invoked
during an undo operation.

This method posts an CheckpointNotification and WillRedoChangeNotification before it performs the
redo operation, and it posts the DidRedoChangeNotification after it performs the redo operation.

See Also: registerUndoWithTarget

registerUndoWithTarget

public void registerUndoWithTarget(
Object target,
NSSelector aSelector,
Object anObject)

Records a single undo operation for target, so that when undo is performed it’s sent aSelector
with anObject as the sole argument. Also clears the redo stack. See “Registering Undo Operations”
(page 325) in the class description for more information.

Throws an IllegalStateException if invoked when no undo group has been established using
beginUndoGrouping. Undo groups are normally set by default, so you should rarely need to begin a
top-level undo group explicitly.

See Also: undoNestedGroup, groupingLevel

C L A S S N S U n d o M a n a g e r

333

registerUndoWithTargetAndArguments

public void registerUndoWithTargetAndArguments(
Object target,
NSSelector selector,
Object[] parameters[])

removeAllActions

public void removeAllActions()

Clears the undo and redo stacks and reenables the receiver.

See Also: enableUndoRegistration, removeAllActionsWithTarget

removeAllActionsWithTarget

public void removeAllActionsWithTarget(Object target)

Clears the undo and redo stacks of all operations involving target as the recipient of the undo
message. Doesn’t re-enable the receiver if it’s disabled. An object that shares an
NSUndoManager with other clients should invoke this message in its implementation of
finalize. <<True?>>

See Also: enableUndoRegistration, removeAllActions

setGroupsByEvent

public void setGroupsByEvent(boolean flag)

Sets whether the receiver automatically groups undo operations during the run loop. If flag is
true, the receiver creates undo groups around each pass through the run loop; if flag is false it
doesn’t. The default is true.

If you turn automatic grouping off, you must close groups explicitly before invoking either undo
or undoNestedGroup.

See Also: groupingLevel, groupsByEvent

334

C L A S S N S U n d o M a n a g e r

setLevelsOfUndo

public void setLevelsOfUndo(int levels)

Sets the maximum number of top-level undo groups the receiver will hold to levels. When
ending an undo group results in the number of groups exceeding this limit, the oldest groups
are dropped from the stack. A limit of zero indicates no limit, so that old undo groups are never
dropped. The default is zero.

If invoked with a limit below the prior limit, old undo groups are immediately dropped.

See Also: enableUndoRegistration, levelsOfUndo

undo

public void undo()

Closes the top-level undo group if necessary and invokes undoNestedGroup. It also invokes
endUndoGrouping if the nesting level is 1. Throws an InternalInconsistencyException if more than
one undo group is open (that is, if the last group isn’t at the top level).

This method posts an “CheckpointNotification” (page 335).

See Also: enableUndoRegistration, groupingLevel

undoNestedGroup

public void undoNestedGroup()

Performs the undo operations in the last undo group (whether top-level or nested), recording
the operations on the redo stack as a single group. Throws an InternalInconsistencyException if
any undo operations have been registered since the last enableUndoRegistration message.

This method posts an “CheckpointNotification” (page 335) and “WillUndoChangeNotification”
(page 337) before it performs the undo operation, and it posts the
“DidUndoChangeNotification” (page 336) after it performs the undo operation.

See Also: undo

C L A S S N S U n d o M a n a g e r

335

Notifications

CheckpointNotification

public static final String CheckpointNotification

Posted whenever an NSUndoManager opens or closes an undo group (except when it opens a
top-level group), and when an NSUndoManager checks the redo stack in canRedo. The notification
contains:

notification object
The NSUndoManager

userInfo

null

DidOpenUndoGroupNotification

public static final String DidOpenUndoGroupNotification

Posted whenever an NSUndoManager opens an undo group, which occurs in an invocation of
beginUndoGrouping. The notification contains:

notification object
The NSUndoManager

userInfo

null

DidRedoChangeNotification

public static final String DidRedoChangeNotification

Posted just after an NSUndoManager performs a redo operation (redo). The notification contains:

336

C L A S S N S U n d o M a n a g e r

notification object
The NSUndoManager

userInfo

null

DidUndoChangeNotification

public static final String DidUndoChangeNotification

Posted just after an NSUndoManager performs an undo operation. If you invoke undo or
undoNestedGroup, this notification will be posted. The notification contains:

notification object
The NSUndoManager

userInfo

null

WillCloseUndoGroupNotification

public static final String WillCloseUndoGroupNotification

Posted whenever an NSUndoManager closes an undo group, which occurs in an invocation of
endUndoGrouping. The notification contains:

notification object
The NSUndoManager

userInfo

null

WillRedoChangeNotification

public static final String WillRedoChangeNotification

Posted just before an NSUndoManager performs a redo operation (redo). The notification
contains:

notification object
The NSUndoManager

C L A S S N S U n d o M a n a g e r

337

userInfo

null

WillUndoChangeNotification

public static final String WillUndoChangeNotification

Posted just before an NSUndoManager performs an undo operation. If you invoke undo or
undoNestedGroup, this notification will be posted. The notification contains:

notification object
The NSUndoManager

userInfo

null

338

C L A S S N S U n d o M a n a g e r

339

C L A S S

NSValidation.DefaultImplementation

Inherits from: Object

Package: com.webobjects.foundation

Class Description

The NSValidation.DefaultImplementation class provides default implementations of the
NSValidation interface. For more information, see the NSValidation interface specification.

Static Methods

validateTakeValueForKeyPath

public static Object validateTakeValueForKeyPath(
Object anObject,
Object value,
String key) throws NSValidation.ValidationException

Confirms that value is legal for the receiver’s property named by keyPath, and assigns the value
to the property if it’s legal (and if value is different from the current value), or throws an
NSValidation.ValidationException if value isn’t legal.

See Also: validateTakeValueForKeyPath (NSValidation)

340

C L A S S N S Va l i d a t i o n . D e f a u l t I m p l e m e n t a t i o n

validateValueForKey

public static Object validateValueForKey(
Object anObject,
Object value,
String key) throws NSValidation.ValidationException

Confirms that value is legal for the receiver’s property named by key, and returns the validated
value if it’s legal, or throws an NSValidation.ValidationException if it isn’t.

See Also: validateValueForKey (NSValidation)

341

C L A S S

NSValidation.ValidationException

Inherits from: RuntimeException : Exception : Throwable : Object

Package: com.webobjects.foundation

Class Description

Instances of the NSValidation.ValidationException class are created and thrown when an error
condition is encountered during the validation of an object that implements NSValidation. For
more information, see the interface specification for NSValidation.

342

C L A S S N S Va l i d a t i o n . Va l i d a t i o n E x c e p t i o n

Constants

NSValidation.ValidationException defines the following constants:

Constructors

NSValidation.ValidationException

public NSValidation.ValidationException(String message)

Creates and returns a new exception with message as the message.

Constant Type Description

AdditionalExc
eptionsKey

String The key for an entry in the exception’s user info dictionary that
contains subexceptions. This constant is deprecated. You should
access this user info dictionary entry using the
additionalExceptions method.

ValidatedKeyU
serInfoKey

String The key for an entry in the exception’s user info dictionary. The
entry contains the key for the property that failed to validate.
This constant is deprecated. You should access this user info
dictionary entry using the key method.

ValidatedObje
ctUserInfoKey

String A key for an entry in the exception’s user info dictionary. The
entry contains the object that failed to validate. This constant is
deprecated. You should access this user info dictionary entry
using the object method.

C L A S S N S Va l i d a t i o n . Va l i d a t i o n E x c e p t i o n

343

public NSValidation.ValidationException(
String message,
NSDictionary userInfo)

Deprecated in the Java Foundation framework. Don’t use this method. Use
NSValidation.ValidationException(String,Object,String) instead.

public NSValidation.ValidationException(
String message,
Object anObject,
String key)

Creates and returns a new exception with message as the message and a userInfo dictionary
specifying anObject for the ValidatedObjectUserInfoKey and key for the ValidatedKeyUserInfoKey.

Static Methods

aggregateExceptionWithExceptions

public static NSValidation.ValidationException aggregateExceptionWithExceptions(
NSArray exceptions)

Returns an exception that is the aggregate of the exceptions in the exceptions array. The returned
aggregate exception has the message and userInfo dictionary of the first exception in the
exceptions array, but the userInfo dictionary is augmented with the list of subexceptions under
the key AdditionalExceptionsKey.

Instance Methods

additionalExceptions

public NSArray additionalExceptions()

Returns the array in the receiver’s userInfo dictionary for the AdditionalExceptionsKey.

344

C L A S S N S Va l i d a t i o n . Va l i d a t i o n E x c e p t i o n

exceptionAddingEntriesToUserInfo

public NSValidation.ValidationException exceptionAddingEntriesToUserInfo(
Object anObject,
String key)

Deprecated in the Java Foundation framework. Don’t use this method. Use
exceptionWithObjectAndKey instead. Returns a new exception that is a copy of the receiver message
and userInfo, but whose userInfo dictionary has been augmented with anObject and key.

exceptionWithObjectAndKey

public NSValidation.ValidationException exceptionWithObjectAndKey(Object anObject,
String key)

Returns a new exception with the same message as the receiver, but whose userInfo dictionary
contains contains anObject and key. When validation exceptions are raised by certain validation
methods such as validateValueForKey, this method is invoked on the exception to create a duplicate
exception with object and property information stored to the new exception’s userInfo
dictionary. The information is stored under the keys ValidatedObjectUserInfoKey and
ValidatedKeyUserInfoKey, respectively. The exception this method returns has the same message as
the original, receiving exception; the only difference is the userInfo dictionary.

key

public String key()

Returns the key in the receiver’s userInfo dictionary for the ValidatedKeyUserInfoKey.

object

public Object object()

Returns the value in the receiver’s userInfo dictionary for the ValidatedObjectUserInfoKey.

C L A S S N S Va l i d a t i o n . Va l i d a t i o n E x c e p t i o n

345

userInfo

public NSDictionary userInfo()

Deprecated in the Java Foundation framework. Don’t use this method. Access the individual
entries using the key and object methods.

Returns the receiver’s userInfo dictionary.

346

C L A S S N S Va l i d a t i o n . Va l i d a t i o n E x c e p t i o n

347

C L A S S

NSValidation.Utility

Inherits from: Object

Package: com.webobjects.foundation

Class Description

The NSValidation.Utility class is a convenience that allows you to access the properties of
NSValidation objects and non-NSValidation objects using the same code. For more information,
see the NSValidation interface specification.

Static Methods

validateTakeValueForKeyPath

public static Object validateTakeValueForKeyPath(
Object anObject,
Object value,
String keyPath) throws NSValidation.ValidationException

If anObject is an NSValidation, invokes validateTakeValueForKeyPath on anObject; otherwise invokes
NSValidation.DefaultImplementation’s validateTakeValueForKeyPath method with anObject as the
object on which to operate.

348

C L A S S N S Va l i d a t i o n . U t i l i t y

validateValueForKey

public static Object validateValueForKey(
Object anObject,
Object value,
String key) throws NSValidation.ValidationException

If anObject is an NSValidation, invokes validateValueForKey on anObject; otherwise invokes
NSValidation.DefaultImplementation’s validateValueForKey method with anObject as the object on
which to operate.

349

I N T E R F A C E

NSArray.Operator

Package: com.webobjects.foundation

Interface Description

The NSArray.Operator interface defines an API for performing operations on the elements in an
array. The method, compute, takes as its arguments an array and a key path. The array provides
the objects on which to operate, and the optional key path further specifies a particular property
on which to operate.

As an example, consider an operator that computes averages. To get the average salary for a set
of Employee objects, send the operator a compute message with “salary” as the key path. The
operator gets the salary value from each of the objects in the array and then returns the computed
average.

Instead of invoking compute directly on an operator, you can use NSArray’s key-value coding
methods with a specially formatted key. The character “@” introduces the name of the operator
you want to perform. For example, to compute the average salary of an array’s elements, you
could invoke valueForKeyPath on the array with “@avg.salary” as the key path. For more
information, see the NSArray class specification.

Additionally, NSArray provides a set of default operators. To access the operators, use the
method operatorForKey, specifying the name of the operator as an argument. For information on
the default operators, see the NSArray class specification.

You can augment the set of default operators with your own custom operator. Simply create a
class that implements NSArray.Operator. To make it available to NSArray for use with
key-value coding, use the method setOperatorForKey.

350

I N T E R F A C E N S A r r a y. O p e r a t o r

Instance Methods

compute

public Object compute(
NSArray values,
String keyPath)

Performs an operation on the elements in values and returns the result. The keyPath argument
optionally specifies a particular property of the elements in values to perform the operation on.

351

I N T E R F A C E

NSCoding

Package: com.webobjects.foundation

Interface Description

The NSCoding interface declares the methods that a class must implement so that instances of
that class can be encoded and decoded. This capability provides the basis for archiving (where
objects and other structures are stored on disk) and distribution (where objects are copied to
different address spaces). See the NSCoder class specification for an introduction to coding.

In keeping with object-oriented design principles, an object being encoded or decoded is
responsible for encoding and decoding its instance variables. A coder instructs the object to do
so by invoking encodeWithCoder or decodeObject, respectively. encodeWithCoder instructs the object to
encode its instance variables to the coder provided. Conversely, decodeObject is the method that
creates an object from the data in the coder provided.

The method decodeObject isn’t strictly part of the NSCoding interface, but it is required of any class
that implements the interface. decodeObject is a static method, and therefore can’t be formally
declared in the NSCoding interface. Any class that should be codable must adopt the NSCoding
interface, implement its methods, and implement the static method decodeObject.

352

I N T E R F A C E N S C o d i n g

Encoding
When an object receives an encodeWithCoder message, it should encode all of its vital instance
variables, after sending a message to super if its superclass also conforms to the NSCoding
interface. An object doesn’t have to encode all of its instance variables. Some values may not be
important to reestablish and others may be derivable from related state upon decoding. Other
instance variables should be encoded only under certain conditions.

For example, suppose you were creating a fictitious MapView class that displays a legend and a
map at various magnifications. The MapView class defines several instance variables, including
the name of the map and the current magnification. The encodeWithCoder method of MapView
might look like the following:

public void encodeWithCoder(NSCoder coder) {
super.encodeWithCoder(coder);
coder.encodeObject(mapName);
coder.encodeInt(magnification);

}

This example assumes that the superclass of MapView also implements the NSCoding interface.
If the superclass of your class does not implement NSCoding, you should omit the line that
invokes super’s encodeWithCoder method.

encodeObject and encodeInt are coder methods that you can use to encode instance variables of your
class. There are other coder methods for other types. The coder also defines corresponding
methods for decoding values. See the NSCoder class specification for a list of methods.

Decoding
In decodeObject the class should first send a message to super’s implementation of decodeObject
(if appropriate) to initialize inherited instance variables. It should then decode and initialize its
own. MapView’s implementation of decodeObject might look like this:

public static Object decodeObject(NSCoder coder) {
MapView result = (MapView)(MapView.class.decodeObject(coder));
result.mapName = (String)coder.decodeObject();
result.magnification = coder.decodeInt();
return result;

}

I N T E R F A C E N S C o d i n g

353

If the superclass of your class does not implement NSCoding, you should simply create a new
instance of your class instead of invoking the superclass’s decodeObject method.

Making Substitutions During Coding
During encoding a coder allows an object being coded to substitute a different class for itself
than the object’s actual class. For example, this allows a private class to be represented in a coder
by a public class. To allow the substitution, a coder invokes the method classForCoder on the object
before its encoded. The coder uses the class returned by this method instead of the object’s actual
class.

Static Methods (in Java) or Class Methods (in ObjC)

decodeObject

public static Object decodeObject(NSCoder coder)

Creates an object from the data in coder. Classes that implement the NSCoding interface must
also implement this method.

This method isn’t strictly part of this interface because static methods can't be formally declared
in an interface. However, this method is so closely related to the interface as to be considered
part of it.

Instance Methods

classForCoder

public Class classForCoder()

Allows the receiver, before being encoded, to substitute a class other than its own in a coder. For
example, private subclasses can substitute the name of a public superclass when being encoded.

354

I N T E R F A C E N S C o d i n g

encodeWithCoder

public void encodeWithCoder(NSCoder coder)

Encodes the receiver using coder.

355

I N T E R F A C E

NSDisposable

Implemented by: NSDisposableRegistry
NSUndoManager

Package: com.webobjects.foundation

Interface Description

The NSDisposable interface declares one method, dispose, in which an object prepares for
destruction. In dispose, an object should clear all references that other objects have to it. For
example, if an NSDisposable object has assigned itself as another object’s delegate, the
NSDisposable object should set the other object’s delegate to null in dispose, thus clearing the
other object’s reference to the NSDisposable object. You should implement this interface if your
object is a delegate for another object.

NSDisposable is needed to clean up references to objects that ought to be destroyed. As an
example, consider NSNotificationCenter. When an object registers for notifications, the
notification center creates a reference to that object so that it can perform the notification at the
appropriate time. Unless the object removes itself as an observer of the notification, the
NSNotificationCenter’s reference to the object prevents the object from being garbage collected.

By implementing NSDisposable, objects are given a chance to remove references that other
objects have to them. This allows other objects to send dispose messages to NSDisposable objects
when the NSDisposable objects are no longer needed. As an example, Direct to Java Client
disposes of controllers when they’re no longer needed, and subsequently, the NSDisposable
controllers are garbage collected.

356

I N T E R F A C E N S D i s p o s a b l e

Guidelines
You should implement NSDisposable if your object is a delegate for another object. If you do
implement NSDisposable, you should be sure that your dispose method will be invoked. If it
won’t be invoked automatically, you can add yourself to an appropriate NSDisposableRegistry.
Known registries are provided by the com.webobjects.eoapplication classes EOController and
EOArchive.

Instance Methods

dispose

public void dispose()

Invoked when the receiver should prepare itself for destruction. Implementations of this method
should break connections that other objects have to the receiver, including unregistering for
notifications, resigning as other objects’ delegates, and so on.

357

I N T E R F A C E

NSKeyValueCoding

Package: com.webobjects.foundation

Interface Description

The NSKeyValueCoding interface defines a data transport mechanism in which the properties
of an object are accessed indirectly by name (or key), rather than directly through invocation of
an accessor method or as instance variables. Thus, all of an object’s properties can be accessed in
a consistent manner. The takeValueForKey method sets the value for an object’s property, and
valueForKey returns the value for an object’s property.

The NSKeyValueCoding interface contains an inner interface,
NSKeyValueCoding.ErrorHandling, that defines an extension to the basic NSKeyValueCoding
interface for handling errors that occur during key-value coding (see the
NSKeyValueCoding.ErrorHandling interface specification).

Additionally, NSKeyValueCoding contains two inner classes, NSKeyValueCoding.
DefaultImplementation and NSKeyValueCoding.Utility. The former provides a default
implementation of the interface, making it easy to implement NSKeyValueCoding on your own
custom classes. The latter is a convenience that allows you to access the properties of
NSKeyValueCoding objects and non-NSKeyValueCoding objects using the same code. Both the
DefaultImplementation class and the Utility class provide NSKeyValueCoding.ErrorHandling
API in addition to basic NSKeyValueCoding API.

358

I N T E R F A C E N S K e y Va l u e C o d i n g

Default Implementation
The methods in the NSKeyValueCoding. DefaultImplementation class are just like the methods
defined by the NSKeyValueCoding interface (and the NSKeyValueCoding.ErrorHandling
interface), except they are static methods and they take an extra argument—the object on which
the default implementation should operate.

For example, suppose you want to implement an Employee class that implements
NSKeyValueCoding using NSKeyValueCoding. DefaultImplementation. Employee’s valueForKey
method would then look like this:

public Object valueForKey(String key) {
return NSKeyValueCoding.DefaultImplementation.valueForKey(this, key);

}

The NSKeyValueCoding. DefaultImplementation methods use accessor methods normally
implemented by objects (such as setKey and key), or they access instance variables directly if no
accessors for a key exist (see “Directly Accessing Instance Variables”). For detailed information,
see the takeValueForKey and valueForKey method descriptions, which describe the default behavior
provided by NSKeyValueCoding. DefaultImplementation. Additionally, see the method
descriptions in the NSKeyValueCoding.ErrorHandling interface specification to see how the
DefaultImplementation class handles errors.

Utility
Recall that the NSKeyValueCoding.Utility class is a convenience that allows you to access the
properties of NSKeyValueCoding objects and non-NSKeyValueCoding objects using the same
code.

Utility’s methods are similar to DefaultImplementation’s methods in that they are static
methods and they take an extra argument—the object on which the method should operate.
However, Utility’s methods simply check to see if the object on which they operate is an

Note: Always use the default implementation of NSKeyValueCoding provided by the
foundation package. The default implementations have significant performance
optimizations. To benefit from them, implement NSKeyValueCoding on a custom class as
shown above by using the methods in NSKeyValueCoding. DefaultImplementation; or if
your class inherits from an WebObjects class that implements NSKeyValueCoding, don’t
override the inherited implementation. Using a custom implementation incurs significant
performance penalties.

I N T E R F A C E N S K e y Va l u e C o d i n g

359

NSKeyValueCoding object and invoke the corresponding NSKeyValueCoding method on the
object if it is. Otherwise, they invoke the corresponding DefaultImplementation method, passing
the object on which to operate.

For example, suppose that you want to access an object with the NSKeyValueCoding API but
you don’t know if the object is an NSKeyValueCoding object. To do so, you simply use the
corresponding Utility API, as in the following line of code:

theValue = NSKeyValueCoding.Utility.valueForKey(object, value, key);

The above line of code is simply a short-cut for the following:

if (object instanceof NSKeyValueCoding) {
theValue = ((NSKeyValueCoding)object).valueForKey(key);

} else {
theValue = NSKeyValueCoding.DefaultImplementation.valueForKey(object, key);

}

Directly Accessing Instance Variables
By default, key-value coding methods directly access instance variables if there are no accessor
methods for setting and retrieving values. However, you can modify this behavior without
overriding the default implementation. To instruct the default implementation not to directly
access instance variables, implement the static method canAccessFieldsDirectly on your
NSKeyValueCoding class to return false.

Constants

NSKeyValueCoding defines the following constant:

Constant Type Description

NullValue NSKeyValueCoding.Null A shared instance of NSKeyValueCoding.Null.

360

I N T E R F A C E N S K e y Va l u e C o d i n g

Static Methods (in Java) or Class Methods (in ObjC)

canAccessFieldsDirectly

public static boolean canAccessFieldsDirectly()

Returns true if the key-value coding methods can access the corresponding field value directly
on finding no accessor method for a property. Returns false if they shouldn't.

An NSKeyValueCoding class doesn’t have to implement this method. It’s an optional method
that allows a class to tailor key-value coding behavior. By default, the key-value implementation
provided by NSKeyValueCoding. DefaultImplementation accesses fields directly if it can’t find
corresponding accessor methods. An NSKeyValueCoding class can override this behavior by
implementing this method to return false, in which case the key-value coding methods don’t
access fields directly.

This method isn’t strictly part of this interface because static methods can't be formally declared
in an interface. However, this method is so closely related to the interface as to be considered
part of it.

Instance Methods

takeValueForKey

public void takeValueForKey(
Object value,
String key)

Sets the receiver’s value for the property identified by key to value.

The default implementation provided by NSKeyValueCoding. DefaultImplementation works as
follows:

1. Searches for a public accessor method of the form setKey, and invokes it if there is one.

I N T E R F A C E N S K e y Va l u e C o d i n g

361

2. If a public accessor method isn’t found, searches for a private accessor method of the form
_setKey, and invokes it if there is one.

3. If an accessor method isn’t found and the static method canAccessFieldsDirectly returns true,
searches for an instance variable based on key and sets its value directly. For the key
“lastName”, this would be _lastName or lastName. (See “Directly Accessing Instance Variables”.)

4. If neither an accessor method nor an instance variable is found, it’s an error condition. It
invokes handleTakeValueForUnboundKey if the object implements
NSKeyValueCoding.ErrorHandling or throws NSKeyValueCoding.
UnknownKeyException if the object doesn’t.

valueForKey

public Object valueForKey(String key)

Returns the receiver’s value for the property identified by key.

The default implementation provided by NSKeyValueCoding. DefaultImplementation works as
follows:

1. Searches for a public accessor method based on key. For example, with a key of “lastName”,
the method looks for a method named getLastName or lastName.

2. If a public accessor method isn’t found, searches for a private accessor method based on key
(a method preceded by an underbar). For example, with a key of “lastName”, the method
looks for a method named _getLastName or _lastName.

3. If an accessor method isn’t found and the static method canAccessFieldsDirectly returns true, the
method searches for an instance variable based on key and returns its value directly. For the
key “lastName”, this would be _lastName or lastName. (See “Directly Accessing Instance
Variables”.)

Note: Always use the default implementation of NSKeyValueCoding provided by the
foundation package. The default implementations have significant performance
optimizations. To benefit from them, implement NSKeyValueCoding on a custom class as
shown above by using the methods in NSKeyValueCoding. DefaultImplementation; or if
your class inherits from an WebObjects class that implements NSKeyValueCoding, don’t
override the inherited implementation. Using a custom implementation incurs significant
performance penalties.

362

I N T E R F A C E N S K e y Va l u e C o d i n g

4. If neither an accessor method nor an instance variable is found, the method invokes
handleQueryWithUnboundKey (defined in NSKeyValueCoding.ErrorHandling).

Note: Always use the default implementation of NSKeyValueCoding provided by the
foundation package. The default implementations have significant performance
optimizations. To benefit from them, implement NSKeyValueCoding on a custom class as
shown above by using the methods in NSKeyValueCoding. DefaultImplementation; or if
your class inherits from an WebObjects class that implements NSKeyValueCoding, don’t
override the inherited implementation. Using a custom implementation incurs significant
performance penalties.

363

I N T E R F A C E

NSKeyValueCoding.ErrorHandling

Package: com.webobjects.foundation

Interface Description

The NSKeyValueCoding.ErrorHandling interface declares an API for handling errors that occur
during key-value coding. For more information, see the NSKeyValueCoding interface
specification.

Instance Methods

handleQueryWithUnboundKey

public Object handleQueryWithUnboundKey(String key)

Invoked from valueForKey when it finds no property binding for key. The default implementation
(see the NSKeyValueCoding. DefaultImplementation class specification) throws an
NSKeyValueCoding.UnknownKeyException, with the target object (TargetObjectUserInfoKey) and
key (UnknownUserInfoKey) in the user info. An NSKeyValueCoding.ErrorHandling class can
override this method to handle the query in some other way. The method can return a value, in
which case that value is returned by the corresponding valueForKey invocation.

364

I N T E R F A C E N S K e y Va l u e C o d i n g . E r r o r H a n d l i n g

handleTakeValueForUnboundKey

public void handleTakeValueForUnboundKey(
Object value,
String key)

Invoked from takeValueForKey when it finds no property binding for key. The default
implementation (see the NSKeyValueCoding. DefaultImplementation class specification)
throws an NSKeyValueCoding.UnknownKeyException, with the target object
(TargetObjectUserInfoKey) and key (UnknownUserInfoKey) in the user info.

unableToSetNullForKey

public void unableToSetNullForKey(String key)

Invoked from takeValueForKey when it’s given a null value for a scalar property (such as an int or
a float). The default implementation (see the NSKeyValueCoding. DefaultImplementation class
specification) throws an IllegalArgumentException. You might want to implement the method
(or override the inherited implementation) to handle the request in some other way, such as by
substituting zero or a sentinel value and invoking takeValueForKey again.

365

I N T E R F A C E

NSKeyValueCodingAdditions

Implements: NSKeyValueCoding

Package: com.webobjects.foundation

Interface Description

The NSKeyValueCodingAdditions interface defines an extension to the basic
NSKeyValueCoding interface. The pair of methods in NSKeyValueCodingAdditions—
takeValueForKeyPath and valueForKeyPath—give access to properties across relationships with key
paths of the form relationship.property; for example, “department.name”. For more information
on the basic key-value coding, see the NSKeyValueCoding interface specification.

The NSKeyValueCodingAdditions interface contains two inner classes,
NSKeyValueCodingAdditions. DefaultImplementation and
NSKeyValueCodingAdditions.Utility. The former provides a default implementation of the
interface, making it easy to implement on your own custom classes. The latter is a convenience
that allows you to access the properties of NSKeyValueCodingAdditions objects and
non-NSKeyValueCodingAdditions objects using the same code.

Default Implementation
The methods in the NSKeyValueCodingAdditions. DefaultImplementation class are just like the
methods defined by the NSKeyValueCodingAdditions interface, except they are static methods
and they take an extra argument—the object on which the default implementation should
operate.

366

I N T E R F A C E N S K e y Va l u e C o d i n g A d d i t i o n s

For example, suppose you want to implement an Employee class that implements
NSKeyValueCodingAdditions using NSKeyValueCodingAdditions. DefaultImplementation.
Employee’s valueForKeyPath method would then look like this:

public Object valueForKeyPath(String keyPath) {
return NSKeyValueCodingAdditions.DefaultImplementation.valueForKeyPath(

this,
keyPath);

}

Utility
Recall that the NSKeyValueCodingAdditions.Utility class is a convenience that allows you to
access the properties of NSKeyValueCodingAdditions objects and non-NSKeyValueCodingAdditions
objects using the same code.

Utility’s methods are similar to DefaultImplementation’s methods in that they are static
methods and they take an extra argument—the object on which the method should operate.
However, Utility’s methods simply check to see if the object on which they operate is an
NSKeyValueCodingAdditions object and invoke the corresponding
NSKeyValueCodingAdditions method on the object if it is. Otherwise, they invoke the
corresponding DefaultImplementation method, passing the object on which to operate.

For example, suppose that you want to access an object with the NSKeyValueCodingAdditions
API but you don’t know if the object is an NSKeyValueCodingAdditions object. To do so, you
simply use the corresponding Utility API, as in the following line of code:

theValue = NSKeyValueCodingAdditions.Utility.valueForKeyPath(object, keyPath);

The above line of code is essentially a short-cut for the following:

if (object instanceof NSKeyValueCodingAdditions) {
theValue = ((NSKeyValueCodingAdditions)object).valueForKeyPath(keyPath);

} else {
theValue = NSKeyValueCodingAdditions.DefaultImplementation.valueForKeyPath(

object, keyPath);
}

I N T E R F A C E N S K e y Va l u e C o d i n g A d d i t i o n s

367

Constants

NSKeyValueCodingAdditions defines the following constant:

Instance Methods

takeValueForKeyPath

public void takeValueForKeyPath(
Object value,
String keyPath)

Sets the value for the property identified by keyPath to value. A key path has the form
relationship.property (with one or more relationships); for example “movieRole.roleName” or
“movieRole.talent.lastName”. The default implementation of this method (provided by
NSKeyValueCodingAdditions. DefaultImplementation) gets the destination object for each
relationship using valueForKey, and sends the final object a takeValueForKey message with value and
property.

valueForKeyPath

public Object valueForKeyPath(String keyPath)

Returns the value for the derived property identified by keyPath. A key path has the form
relationship.property (with one or more relationships); for example “movieRole.roleName” or
“movieRole.talent.lastName”. The default implementation of this method (provided by
NSKeyValueCodingAdditions. DefaultImplementation) gets the destination object for each
relationship using valueForKey, and returns the result of a valueForKey message to the final object.

Constant Type Description

KeyPathSeparator String The string used to separate components of a key path—a period (.).

368

I N T E R F A C E N S K e y Va l u e C o d i n g A d d i t i o n s

369

I N T E R F A C E

NSLocking

Package: com.webobjects.foundation

Interface Description

The NSLocking protocol declares the elementary methods adopted by classes that define lock
objects. A lock object is used to coordinate the actions of multiple threads of execution within a
single application. By using a lock object, an application can protect critical sections of code from
being executed simultaneously by separate threads, thus protecting shared data and other
shared resources from corruption.

For example, consider a multithreaded application in which each thread updates a shared
counter. If two threads simultaneously fetch the current value into local storage, increment it,
and then write the value back, the counter will be incremented only once, losing one thread’s
contribution. However, if the code that manipulates the shared data (the critical section of code)
must be locked before being executed, only one thread at a time can perform the updating
operation, and collisions are prevented.

A lock object is either locked or unlocked. You acquire a lock by sending the object a lock
message, thus putting the object in the locked state. You relinquish a lock by sending an unlock
message, and thus putting the object in the unlocked state. (The Foundation classes that adopt
this protocol define additional ways to acquire and relinquish locks.)

The lock method as declared in this protocol is blocking. That is, the thread that sends a lock
message is blocked from further execution until the lock is acquired (presumably because some
other thread relinquishes its lock). Classes that adopt this protocol typically add methods that
offer nonblocking alternatives.

370

I N T E R F A C E N S L o c k i n g

These Foundation classes conform to the NSLocking protocol:

These classes use a locking mechanism that causes a thread to sleep while waiting to acquire a
lock rather than to poll the system constantly. Thus, lock objects can be used to lock
time-consuming operations without causing system performance to degrade. See the class
specifications for these classes for further information on their behavior and usage.

Java also has a locking mechanism, which is based on the synchronized keyword. In certain
cases, you may want to use the Foundation locking classes instead:

■ The Foundation classes have extra features that are not supported by the synchronized
locking mechanism like nonblocking lock methods.

■ Foundation locking objects can coordinate the locking of many objects at the same time,
unlike the synchronized locking mechanism, which can lock only a single method, class, or
instance at a time.

■ These locking classes were available in previous versions of WebObjects. You may encounter
these classes if you are porting older applications to this version of WebObjects.

Constants
NSLocking defines the following constants to simplify locking method invocations that take
time intervals as parameters.

Class Adds these features to the basic protocol

NSLock A nonblocking lock method; the ability to limit the duration of a
locking attempt.

NSMultiReaderLock The ability for multiple threads to acquire the lock for reading while
allowing only a single thread to acquire the lock for writing.

NSRecursiveLock The ability for a single thread to acquire a lock more than once
without deadlocking.

Constant Type Description

OneSecond long Number of milliseconds in one second

OneMinute long Number of milliseconds in one minute

OneHour long Number of milliseconds in one hour

I N T E R F A C E N S L o c k i n g

371

Method Types

All methods

lock

unlock

Instance Methods

lock

public void lock()

Attempts to acquire a lock. This method blocks a thread’s execution until the lock can be
acquired.

An application protects a critical section of code by requiring a thread to acquire a lock before
executing the code. Once the critical section is past, the thread relinquishes the lock by invoking
unlock.

OneDay long Number of milliseconds in one day

OneWeek long Number of milliseconds in one week

OneYear long Number of milliseconds in one year (defined as
365.2425 days)

OneCentury long Number of milliseconds in one century

Constant Type Description

372

I N T E R F A C E N S L o c k i n g

unlock

public void unlock()

Relinquishes a previously acquired lock.

373

I N T E R F A C E

NSValidation

Package: com.webobjects.foundation

Interface Description

The NSValidation interface defines a validation mechanism in which the properties of an object
are validated indirectly by name (or key), rather than directly through invocation of an specific
validation method. Thus, all of an object’s properties can be validated in a consistent manner.
The validateValueForKey method confirms that a value is legal for a particular property, and
validateTakeValueForKeyPath performs the validation and assigns the value if it’s legal and different
from the current value.

The NSValidation interface contains two inner classes, NSValidation.DefaultImplementation
and NSValidation.Utility. The former provides a default implementation of the interface,
making it easy to implement on your own custom classes. The latter is a convenience that allows
you to access the properties of NSValidation objects and non-NSValidation objects using the
same code.

Default Implementation
The methods in the NSValidation.DefaultImplementation class are just like the methods defined
by the NSValidation interface, except they are static methods and they take an extra argument—
the object on which the default implementation should operate.

For example, suppose you want to implement an Employee class that implements NSValidation
using NSValidation.DefaultImplementation. Employee’s validateValueForKey method would then
look like this:

374

I N T E R F A C E N S Va l i d a t i o n

public Object validateValueForKey(Object value, String key) {
return NSValidation.DefaultImplementation.validateValueForKey(this, value, key);

}

The NSValidation.DefaultImplementation methods search for property specific methods of the
form validateKey and invoke them if they exist. Thus an NSValidation class should implement a
validate method for each property that has associated validation logic. For example, a validateAge
method could check that the value a user enters as an age is within acceptable limits and throw
an NSValidation.ValidationException if it finds an unacceptable value. For a more information
on the validateKey methods, see “Writing validateKey Methods” (page 375).

Because you implement custom validation logic in the validateKey methods, you rarely need to
implement the NSValidation methods from scratch. Rather, the default implementation
provided by NSValidation.DefaultImplementation is generally sufficient.

Utility
Recall that the NSValidation.Utility class is a convenience that allows you to access the
properties of NSValidation objects and non-NSValidation objects using the same code.

Utility’s methods are similar to DefaultImplementation’s methods in that they are static
methods and they take an extra argument—the object on which the method should operate.
However, Utility’s methods simply check to see if the object on which they operate is an
NSValidation object and invoke the corresponding NSValidation method on the object if it is.
Otherwise, they invoke the corresponding DefaultImplementation method, passing the object
on which to operate.

For example, suppose that you want to access an object with the NSValidation API but you don’t
know if the object is an NSValidation object. To do so, you simply use the corresponding Utility
API, as in the following line of code:

theValue = NSValidation.Utility.validateValueForKey(object, value, key);

Note: Always use the default implementation of NSValidation provided by the foundation
package. The default implementations have significant performance optimizations. To benefit
from them, implement NSValidation on a custom class as shown above by using the methods
in NSValidation.DefaultImplementation; or if your class inherits from an WebObjects class
that implements NSValidation, don’t override the inherited implementation. Using a custom
implementation incurs significant performance penalties.

I N T E R F A C E N S Va l i d a t i o n

375

The above line of code is simply a short-cut for the following:

if (object instanceof NSValidation) {
theValue = ((NSValidation)object).validateValueForKey(key);

} else {
theValue = validateValueForKey.DefaultImplementation.validateValueForKey(

object, value, key);
}

Writing validateKey Methods
To implement validation logic in an NSValidation class, you create a validateKey method for each
property needing validation. The default implementations of NSValidation’s methods look for
these validateKey methods and use them to perform the actual validation.

A class’s validateKey methods should have the following form:

public Object validateKey(Object aValue) throws NSValidation.ValidationException

The implementation should confirm that the value passed in is legal and throw an
NSValidation.ValidationException if it’s not. It should also coerce the argument to the proper
type, if necessary. Note that a validateKey method’s argument type is Object, and not specifically
the class of the corresponding property (String, Integer, or NSTimestamp, for example). Thus, a
validateKey method needs to check the type of the argument and convert it to a different type if
necessary. The return type of a validateKey method doesn’t have to be Object. In fact, it’s a good
idea to specify the class of the value the method returns, which is generally the class of the
corresponding property. The argument type, on the other hand, should generally be Object. For
more information, see “The validateKey Argument Type” (page 376).

The following validateAge method is an example that validates values for a property named age
that’s stored as an Integer. The method handles arguments of type String and Number. If the
argument is an instance of any other class, the method throws a
NSValidation.ValidationException.

public Number validateAge(Object aValue) throws NSValidation.ValidationException {
Integer numberValue;
int age;

if (aValue instanceof String) {
// Convert the String to an Integer.
try {

376

I N T E R F A C E N S Va l i d a t i o n

numberValue = new Integer((String)aValue);
} catch (NumberFormatException numberFormatException) {
throw new NSValidation.ValidationException(

“Validation exception: Unable to convert the String “ + aValue
+ “ to an Integer”);

}
} else if (aValue instanceof Number) {

numberValue = new Integer(((Number)aValue).intValue());
} else {

throw new NSValidation.ValidationException
(“Validation exception: Unable to convert the Object “ + aValue
+ “to an Integer”);

}

age = numberValue.intValue();
if (age < 16) {

throw new NSValidation.ValidationException
(“Age of “ + age + “ is below minimum.”, this, “age”);

}
return numberValue;

}

The validateAge method checks the argument’s class. If the argument is a String or Number, it
creates an Integer from the argument and validates it. If the Integer fails the validation test (if the
value is less than 16), the method throws a NSValidation.ValidationException inserting the
NSValidation object and the key into the exception’s userInfo dictionary by providing them to
the constructor. On the other hand, if the Integer passes the validation test, the method returns
the Integer.

The code that invokes the validation process is expected to use the value returned from the
validateKey method instead of the original value it provided. Thus, a validateKey method has
an opportunity to coerce a value into a type it prefers. As another example of coercion, a
validateKey method can return null. A method might do this, for example, if it is invoked with
the empty string as the argument.

The validateKey Argument Type
The argument type of a validateKey method doesn’t have to be specifically Object; it can be
Object or any subclass. However, generally Object is the most appropriate type for a validateKey
method’s argument (the one exception is described later in this section). As explained in

I N T E R F A C E N S Va l i d a t i o n

377

“Writing validateKey Methods” (page 375), a validateKey method should be able to handle any
reasonable argument type. You can type the argument to the common superclass of all
reasonable arguments, but this is frequently Object.

You should not overload a validateKey method for a particular property, creating different
validateKey methods for each argument type. Instead you should create one version of the
validateKey method for the property that takes Object as its argument (or at least a superclass of
all the possible argument types). The method’s implementation should test the argument’s type
and coerce it appropriately.

There’s one situation in which the argument type should be more specific than Object. If the
property corresponding to the validateKey method is a to-one relationship to an enterprise
object, the argument’s type should be EOEnterpriseObject.

Instance Methods

validateTakeValueForKeyPath

public Object validateTakeValueForKeyPath(
Object value,
String keyPath) throws NSValidation.ValidationException

Confirms that value is legal for the receiver’s property named by keyPath, and assigns the value to
the property if it’s legal (and if value is different from the current value), or throws an
NSValidation.ValidationException if value isn’t legal.

A key path has the form relationship.property (with one or more relationships); for example
“movieRole.roleName” or “movieRole.talent.lastName”.

The default implementation of this method (provided by NSValidation.DefaultImplementation)
gets the destination object for each relationship using valueForKey, and sends the final object a
validateValueForKey message with value and property.

378

I N T E R F A C E N S Va l i d a t i o n

validateValueForKey

public Object validateValueForKey(
Object value,
String key) throws NSValidation.ValidationException

Confirms that value is legal for the receiver’s property named by key, and returns the validated
value if it’s legal, or throws an NSValidation.ValidationException if it isn’t. Note that the value
returned from this method can be different than the one passed as an argument.

The default implementation of this method (provided by NSValidation.DefaultImplementation)
checks for a method of the form validateKey (for example, validateBudget for a key of “budget”). If
such a method exists, it invokes it and returns the result. Thus, NSValidation objects can
implement individual validateKey methods to check limits, test for nonsense values, and coerce
values (convert strings to dates or numbers, for example). For more information on validateKey
methods, see “Writing validateKey Methods” (page 375).

	NSArray
	NSBundle
	NSCoder
	NSCoding.Support
	NSComparator
	NSComparator.ComparisonException
	NSData
	NSDelayedCallbackCenter
	NSDictionary
	NSDisposableRegistry
	NSForwardException
	NSKeyValueCoding. DefaultImplementation
	NSKeyValueCoding.Null
	NSKeyValueCoding. UnknownKeyException
	NSKeyValueCoding.Utility
	NSKeyValueCoding.ValueAccessor
	NSKeyValueCodingAdditions. DefaultImplementation
	NSKeyValueCodingAdditions.Utility
	NSLock
	NSLog
	NSLog.Logger
	NSLog.PrintStreamLogger
	NSMultiReaderLock
	NSMutableArray
	NSMutableData
	NSMutableDictionary
	NSMutableRange
	NSMutableSet
	NSNotification
	NSNotificationCenter
	NSNumberFormatter
	NSPathUtilities
	NSProperties
	NSPropertyListSerialization
	NSRange
	NSRecursiveLock
	NSSelector
	NSSet
	NSSocketUtilities
	NSTimestamp
	NSTimestampFormatter
	NSTimestamp.IntRef
	NSTimeZone
	NSUndoManager
	NSValidation.DefaultImplementation
	NSValidation.ValidationException
	NSValidation.Utility
	NSArray.Operator
	NSCoding
	NSDisposable
	NSKeyValueCoding
	NSKeyValueCoding.ErrorHandling
	NSKeyValueCodingAdditions
	NSLocking
	NSValidation

